Overall Statistics |
Total Trades 14462 Average Win 0.32% Average Loss -0.19% Compounding Annual Return 17.018% Drawdown 48.600% Expectancy 0.156 Net Profit 681.090% Sharpe Ratio 0.674 Loss Rate 57% Win Rate 43% Profit-Loss Ratio 1.66 Alpha 0.317 Beta -9.918 Annual Standard Deviation 0.23 Annual Variance 0.053 Information Ratio 0.603 Tracking Error 0.23 Treynor Ratio -0.016 Total Fees $29716.11 |
from QuantConnect.Data.UniverseSelection import * import pandas as pd import numpy as np class EnhancedShortTermMeanReversionAlgorithm(QCAlgorithm): def Initialize(self): self.SetStartDate(2005, 01, 01) #Set Start Date self.SetEndDate(2018, 01, 27) #Set Start Date self.SetCash(50000) #Set Strategy Cash self.UniverseSettings.Resolution = Resolution.Daily self.AddUniverse(self.CoarseSelectionFunction, self.FineSelectionFunction) self.AddEquity("SPY", Resolution.Minute) # rebalance the universe selection once a month self.rebalence_flag = 0 # make sure to run the universe selection at the start of the algorithm even it's not the manth start self.first_month_trade_flag = 1 self.trade_flag = 0 # Number of quantiles for sorting returns for mean reversion self.nq = 5 # Number of quantiles for sorting volatility over five-day mean reversion period self.nq_vol = 3 # the symbol list after the coarse and fine universe selection self.universe = None self.Schedule.On(self.DateRules.MonthStart("SPY"), self.TimeRules.At(0, 0), Action(self.monthly_rebalance)) self.Schedule.On(self.DateRules.EveryDay("SPY"), self.TimeRules.BeforeMarketClose("SPY", 303), Action(self.get_prices)) self.Schedule.On(self.DateRules.EveryDay("SPY"), self.TimeRules.BeforeMarketClose("SPY", 302), Action(self.daily_rebalance)) self.Schedule.On(self.DateRules.EveryDay("SPY"), self.TimeRules.BeforeMarketClose("SPY", 301), Action(self.short)) self.Schedule.On(self.DateRules.EveryDay("SPY"), self.TimeRules.BeforeMarketClose("SPY", 300), Action(self.long)) def monthly_rebalance(self): # rebalance the universe every month self.rebalence_flag = 1 def CoarseSelectionFunction(self, coarse): if self.rebalence_flag or self.first_month_trade_flag: # drop stocks which have no fundamental data or have too low prices selected = [x for x in coarse if (x.HasFundamentalData) and (float(x.Price) > 5)] # rank the stocks by dollar volume and choose the top 50 filtered = sorted(selected, key=lambda x: x.DollarVolume, reverse=True) return [ x.Symbol for x in filtered[:50]] else: return self.universe def FineSelectionFunction(self, fine): if self.rebalence_flag or self.first_month_trade_flag: # filter the stocks which have positive EV To EBITDA filtered_fine = [x for x in fine if x.ValuationRatios.EVToEBITDA > 0] self.universe = [x.Symbol for x in filtered_fine] self.rebalence_flag = 0 self.first_month_trade_flag = 0 self.trade_flag = 1 return self.universe def OnData(self, data): pass def short(self): if self.universe is None: return SPY_Velocity = 0 self.long_leverage = 0 self.short_leverage = 0 # request the history of benchmark pri = self.History(["SPY"], 200, Resolution.Daily) pos_one = (pri.loc["SPY"]['close'][-1]) pos_six = (pri.loc["SPY"]['close'][-75:].mean()) # calculate velocity of the benchmark velocity_stop = (pos_one - pos_six)/100.0 SPY_Velocity = velocity_stop if SPY_Velocity > 0.0: self.long_leverage = 1.8 self.short_leverage = -0.0 else: self.long_leverage = 1.1 self.short_leverage = -0.7 for symbol in self.shorts: if len(self.shorts) + self.existing_shorts == 0: return self.AddEquity(symbol, Resolution.Minute) self.SetHoldings(symbol, self.short_leverage/(len(self.shorts) + self.existing_shorts)) def long(self): if self.universe is None: return for symbol in self.longs: if len(self.longs) + self.existing_longs == 0: return self.AddEquity(symbol, Resolution.Minute) self.SetHoldings(symbol, self.long_leverage/(len(self.longs) + self.existing_longs)) def get_prices(self): if self.universe is None: return # Get the last 6 days of prices for every stock in our universe prices = {} hist = self.History(self.universe, 6, Resolution.Daily) for i in self.universe: if str(i) in hist.index.levels[0]: prices[i.Value] = hist.loc[str(i)]['close'] df_prices = pd.DataFrame(prices, columns = prices.keys()) # calculate the daily log return daily_rets = np.log(df_prices/df_prices.shift(1)) # calculate the latest return but skip the most recent price rets = (df_prices.iloc[-2] - df_prices.iloc[0]) / df_prices.iloc[0] # standard deviation of the daily return stdevs = daily_rets.std(axis = 0) self.ret_qt = pd.qcut(rets, 5, labels=False) + 1 self.stdev_qt = pd.qcut(stdevs, 3, labels=False) + 1 self.longs = list((self.ret_qt[self.ret_qt == 1].index) & (self.stdev_qt[self.stdev_qt < 3].index)) self.shorts = list((self.ret_qt[self.ret_qt == self.nq].index) & (self.stdev_qt[self.stdev_qt < 3].index)) def daily_rebalance(self): # rebalance the position in portfolio every day if self.universe is None: return self.existing_longs = 0 self.existing_shorts = 0 for symbol in self.Portfolio.Keys: if (symbol.Value != 'SPY') and (symbol.Value in self.ret_qt.index): current_quantile = self.ret_qt.loc[symbol.Value] if self.Portfolio[symbol].Quantity > 0: if (current_quantile == 1) and (symbol not in self.longs): self.existing_longs += 1 elif (current_quantile > 1) and (symbol not in self.shorts): self.SetHoldings(symbol, 0) elif self.Portfolio[symbol].Quantity < 0: if (current_quantile == self.nq) and (symbol not in self.shorts): self.existing_shorts += 1 elif (current_quantile < self.nq) and (symbol not in self.longs): self.SetHoldings(symbol, 0)