Overall Statistics |
Total Trades 125 Average Win 0.55% Average Loss -0.17% Compounding Annual Return 59.615% Drawdown 0.700% Expectancy 0.843 Net Profit 6.615% Sharpe Ratio 4.636 Probabilistic Sharpe Ratio 99.104% Loss Rate 56% Win Rate 44% Profit-Loss Ratio 3.18 Alpha 0.416 Beta 0.264 Annual Standard Deviation 0.109 Annual Variance 0.012 Information Ratio 1.307 Tracking Error 0.128 Treynor Ratio 1.916 Total Fees $127.44 |
import pandas as pd class ParticleNadirsonInterceptor(QCAlgorithm): def Initialize(self): self.SetStartDate(2020, 12, 2) # Set Start Date self.SetEndDate(2021, 1, 20) # Set End Date self.SetCash(10000) # Set Strategy Cash self.current_month = -1 self.coarse_count = 300 self.fine_count = 5 self.benchmark="SPY" self.resolution = Resolution.Daily self.UniverseSettings.Resolution = self.resolution self.AddUniverse(self.CoarseSelectionFunction, self.FineSelectionRsBased) self.SetAlpha(ConstantAlphaModel(InsightType.Price, InsightDirection.Up, timedelta(30))) myPCM = EqualWeightingPortfolioConstructionModel() myPCM.RebalanceOnInsightChanges = False myPCM.RebalanceOnSecurityChanges = True self.SetPortfolioConstruction(myPCM) self.SetExecution(ImmediateExecutionModel()) def CoarseSelectionFunction(self, coarse): if self.current_month == self.Time.month: return Universe.Unchanged self.current_month = self.Time.month sortedByDollarVolume = sorted([x for x in coarse if x.HasFundamentalData], key=lambda x: x.DollarVolume, reverse=True)[:self.coarse_count] self.Debug(f"No of Securities in Coarse Selection: {len([i.Symbol for i in sortedByDollarVolume])}") return [i.Symbol for i in sortedByDollarVolume] def FineSelectionRsBased(self, fine): resultSet={} rsBenchmark=self.getRslFactor(self.benchmark) for x in fine: resultSet[x.Symbol]=self.getRslFactor(str(x.Symbol.Value)) resultSet=sorted([x for x in resultSet.items() if x[1]>rsBenchmark], key=lambda x: x[1], reverse=True)[:self.fine_count] self.Debug(f"No of Securities in Fine Selection: {len([x[0] for x in resultSet])}") return [x[0] for x in resultSet] def getRslFactor(self,symbol): self.AddEquity(symbol, Resolution.Daily) # lookback days : weight days = {40:0.6,80:0.25,160:0.15} result=[] df=pd.DataFrame(self.History(self.Symbol(symbol), 300, Resolution.Daily)) df=df.iloc[::-1] df=df.reset_index(level=0, drop=True) for x in days: if len(df)>int(x): result.append([symbol, x, df.iloc[0]['close'], df.iloc[x-1]['close'],days[x]]) else: return -1000 # missing data workaround df = pd.DataFrame(result,columns=['Symbol','Days','Ref_Price','Close_Price','Weight'],dtype=float) df = df.assign(Rsl=(df['Ref_Price'])/df['Close_Price']*df['Weight']) rsl= round(float((abs(df['Rsl']).sum()*1000)-1000),5) return rsl
# selection - RS based / Z-score? # risk - manual (hourly) or mean reverse # rebalance - weekly based on growth # cash - increase size monthly # Returns True if TradeBar data is present else False #if not data.Bars.ContainKey(symbol): #return #self.AddUniverse(self.CoarseSelectionFunction, self.FineSelectionFundamental) # def FineSelectionFundamental(self, fine): # fine = [x for x in fine if x.EarningReports.TotalDividendPerShare.ThreeMonths # and x.ValuationRatios.PriceChange1M # and x.ValuationRatios.BookValuePerShare # and x.ValuationRatios.FCFYield] # sortedByfactor1 = sorted(fine, key=lambda x: x.EarningReports.TotalDividendPerShare.ThreeMonths, reverse=True) # sortedByfactor2 = sorted(fine, key=lambda x: x.ValuationRatios.PriceChange1M, reverse=False) # sortedByfactor3 = sorted(fine, key=lambda x: x.ValuationRatios.BookValuePerShare, reverse=True) # sortedByfactor4 = sorted(fine, key=lambda x: x.ValuationRatios.FCFYield, reverse=True) # stock_dict = {} # for rank1, ele in enumerate(sortedByfactor1): # rank2 = sortedByfactor2.index(ele) # rank3 = sortedByfactor3.index(ele) # rank4 = sortedByfactor4.index(ele) # stock_dict[ele] = rank1 + rank2 + rank3 + rank4 # sorted_stock = sorted(stock_dict.items(), # key=lambda d:d[1], reverse=True)[:self.fine_count] # return [x[0].Symbol for x in sorted_stock]