Overall Statistics |
Total Orders 102 Average Win 11.69% Average Loss -3.00% Compounding Annual Return 38.419% Drawdown 32.900% Expectancy 1.594 Start Equity 10000 End Equity 69752.13 Net Profit 597.521% Sharpe Ratio 1.015 Sortino Ratio 1.333 Probabilistic Sharpe Ratio 47.364% Loss Rate 47% Win Rate 53% Profit-Loss Ratio 3.90 Alpha 0.231 Beta 0.341 Annual Standard Deviation 0.263 Annual Variance 0.069 Information Ratio 0.58 Tracking Error 0.279 Treynor Ratio 0.783 Total Fees $596.16 Estimated Strategy Capacity $130000000.00 Lowest Capacity Asset MARA VSI9G9W3OAXX Portfolio Turnover 0.99% |
from AlgorithmImports import * from sklearn.svm import SVC from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score import numpy as np import pandas as pd # ------------------------------ # Custom Models: 0.1% Fee & 0 Slippage # ------------------------------ class CustomFeeModel: """ Applies a 0.1% transaction fee on each trade (open/close). """ def GetOrderFee(self, parameters): orderValue = parameters.Security.Price * abs(parameters.Order.Quantity) fee = 0.001 * orderValue # 0.1% of trade notional return OrderFee(CashAmount(fee, "USD")) class CustomSlippageModel: """ Sets slippage to 0. """ def GetSlippageApproximation(self, asset, order): return 0 class MLTradingAlgorithm(QCAlgorithm): def Initialize(self): self.SetStartDate(2019, 1, 1) self.SetEndDate(2024, 12, 31) self.SetCash(10000) self.symbol = self.AddEquity("MARA", Resolution.Daily).Symbol self.Securities[self.symbol].SetFeeModel(CustomFeeModel()) self.Securities[self.symbol].SetSlippageModel(CustomSlippageModel()) self.data = RollingWindow[TradeBar](200) self.SetWarmUp(200) self.model = SVC(probability=True, random_state=42) self.training_count = 0 self.is_model_trained = False self.allocation_fraction = 0.2 self.spySymbol = self.AddEquity("SPY", Resolution.Daily).Symbol self.Securities[self.spySymbol].SetFeeModel(CustomFeeModel()) self.Securities[self.spySymbol].SetSlippageModel(CustomSlippageModel()) self.SetBenchmark(self.spySymbol) self.spyPriceStart = None self.initialCapital = None # Initialize counters for tracking performance against SPY self.beat_spy_count = 0 self.total_comparisons = 0 self.Schedule.On(self.DateRules.Every(DayOfWeek.Monday), self.TimeRules.At(10, 0), self.TrainModel) def OnData(self, data): if self.initialCapital is None: self.initialCapital = self.Portfolio.TotalPortfolioValue if self.spyPriceStart is None and data.ContainsKey(self.spySymbol): bar = data[self.spySymbol] if bar and bar.Close > 0: self.spyPriceStart = bar.Close if not data.ContainsKey(self.symbol): return trade_bar = data[self.symbol] if trade_bar is None: return self.data.Add(trade_bar) if not self.data.IsReady or self.data.Count < 200: return if not self.is_model_trained: self.Debug("Model is not trained yet. Skipping prediction.") return df = self.GetFeatureDataFrame() if df is None or len(df) < 1: return latest_features = df.iloc[-1, :-1].values.reshape(1, -1) try: prob_class = self.model.predict_proba(latest_features)[0][1] prediction = 1 if prob_class > 0.5 else 0 except Exception as e: self.Debug(f"Error: Model prediction failed. {e}") return holdings = self.Portfolio[self.symbol].Quantity if prediction == 1 and holdings <= 0: self.SetHoldings(self.symbol, self.allocation_fraction) elif prediction == 0 and holdings > 0: self.Liquidate(self.symbol) def TrainModel(self): df = self.GetFeatureDataFrame() if df is None or len(df) < 50: self.Debug("Insufficient data for training.") return X = df.iloc[:, :-1] y = df.iloc[:, -1] X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=0.2, shuffle=False, random_state=42 ) self.model.fit(X_train, y_train) self.is_model_trained = True y_train_prob = self.model.predict_proba(X_train)[:, 1] y_train_pred_binary = [1 if val > 0.5 else 0 for val in y_train_prob] train_accuracy = accuracy_score(y_train, y_train_pred_binary) y_test_prob = self.model.predict_proba(X_test)[:, 1] y_test_pred_binary = [1 if val > 0.5 else 0 for val in y_test_prob] test_accuracy = accuracy_score(y_test, y_test_pred_binary) self.training_count += 1 self.Debug(f"Training #{self.training_count}: " f"Train Accuracy: {train_accuracy:.2%}, " f"Test Accuracy: {test_accuracy:.2%}") def GetFeatureDataFrame(self): if self.data.Count < 200: return None close_prices = [bar.Close for bar in self.data] df = pd.DataFrame(close_prices, columns=["Close"]) df["SMA_10"] = df["Close"].rolling(window=10).mean() df["SMA_50"] = df["Close"].rolling(window=50).mean() delta = df["Close"].diff() gain = (delta.where(delta > 0, 0)).rolling(14).mean() loss = (-delta.where(delta < 0, 0)).rolling(14).mean() rs = gain / loss df["RSI"] = 100 - (100 / (1 + rs)) df["MACD"] = df["Close"].ewm(span=12, adjust=False).mean() - df["Close"].ewm(span=26, adjust=False).mean() df["MACD_Signal"] = df["MACD"].ewm(span=9, adjust=False).mean() df["HV_30"] = df["Close"].pct_change().rolling(window=30).std() * np.sqrt(252) df["Target"] = (df["Close"].shift(-1) > df["Close"]).astype(int) df.dropna(inplace=True) return df def OnOrderEvent(self, orderEvent): if orderEvent.Status == OrderStatus.Filled: if self.spyPriceStart is None or self.spyPriceStart == 0: return strategyReturn = (self.Portfolio.TotalPortfolioValue / self.initialCapital - 1) * 100.0 spyPriceNow = self.Securities[self.spySymbol].Price spyReturn = (spyPriceNow / self.spyPriceStart - 1) * 100.0 # Increment total comparisons and beat count if strategy outperforms SPY self.total_comparisons += 1 if strategyReturn > spyReturn: self.beat_spy_count += 1 if strategyReturn > spyReturn: conclusion = "Strategy is beating SPY" elif strategyReturn < spyReturn: conclusion = "SPY is beating the Strategy" else: conclusion = "Strategy and SPY are at the same return" self.Debug(f"[Order Filled] Strategy Return: {strategyReturn:.2f}%, " f"SPY B/H Return: {spyReturn:.2f}%. {conclusion}") def OnEndOfAlgorithm(self): # Print the final count of times the strategy beat SPY self.Debug(f"Number of times strategy beat SPY: {self.beat_spy_count} out of {self.total_comparisons}")