Overall Statistics |
Total Orders 277 Average Win 2.13% Average Loss -1.75% Compounding Annual Return 5.604% Drawdown 15.200% Expectancy 0.430 Start Equity 200000 End Equity 533031.00 Net Profit 166.516% Sharpe Ratio 0.346 Sortino Ratio 0.158 Probabilistic Sharpe Ratio 2.386% Loss Rate 36% Win Rate 64% Profit-Loss Ratio 1.22 Alpha 0 Beta 0 Annual Standard Deviation 0.064 Annual Variance 0.004 Information Ratio 0.634 Tracking Error 0.064 Treynor Ratio 0 Total Fees $7598.67 Estimated Strategy Capacity $26000.00 Lowest Capacity Asset UGA U0H7XEJYK485 Portfolio Turnover 2.55% |
# region imports from AlgorithmImports import * from pandas.tseries.offsets import BDay # endregion # Your New Python File class FedDays(PythonData): algo = None @staticmethod def set_algo(algo) -> None: FedDays.algo = algo def GetSource(self, config: SubscriptionDataConfig, date: datetime, isLiveMode: bool) -> SubscriptionDataSource: if isLiveMode: # FedDays.algo.Log(f"Edited GetSource date {FedDays.algo.Time}") return SubscriptionDataSource("https://data.quantpedia.com/backtesting_data/economic/fed_days.json", SubscriptionTransportMedium.RemoteFile, FileFormat.UnfoldingCollection) return SubscriptionDataSource("https://data.quantpedia.com/backtesting_data/economic/fed_days.csv", SubscriptionTransportMedium.RemoteFile) def Reader(self, config: SubscriptionDataConfig, line: str, date: datetime, isLiveMode: bool) -> BaseData: if isLiveMode: try: # FedDays.algo.Log(f"Reader") objects = [] data = json.loads(line) end_time = None for index, sample in enumerate(data): custom_data = FedDays() custom_data.Symbol = config.Symbol custom_data.Time = (datetime.strptime(str(sample["fed_date"]), "%Y-%m-%d") - BDay(1)).replace(hour=9, minute=31) # FedDays.algo.Log(f"{custom_data.Time}") end_time = custom_data.Time objects.append(custom_data) return BaseDataCollection(end_time, config.Symbol, objects) except ValueError: # FedDays.algo.Log(f"Reader Error") return None else: if not (line.strip() and line[0].isdigit()): return None custom = FedDays() custom.Symbol = config.Symbol custom.Time = (datetime.strptime(line, "%Y-%m-%d") - BDay(1)).replace(hour=9, minute=31) custom.Value = 0. custom["fed_date_str"] = line return custom
from AlgorithmImports import * from pandas.tseries.offsets import BDay # endregion class MetatronGasolinePreHolidayEffect(QCAlgorithm): _notional_value: float = 200_000 _trade_exec_minute_offset: int = 15 _traded_asset: str = 'UGA' def initialize(self) -> None: self.set_start_date(2007, 1, 1) self.set_cash('USD', self._notional_value) self.set_brokerage_model(BrokerageName.INTERACTIVE_BROKERS_BROKERAGE, AccountType.MARGIN) self.settings.minimum_order_margin_portfolio_percentage = 0 self.settings.daily_precise_end_time = False self._offset_days: List[int] = [1, 5] self._traded_asset: Symbol = self.add_equity(self._traded_asset, Resolution.MINUTE).symbol self._holidays_dates: List[datetime.date] = list( map(lambda x: x.date(), list(self.securities[self._traded_asset].exchange.hours.holidays)) ) self._rebalance_flag: bool = False self.schedule.on( self.date_rules.every_day(self._traded_asset), self.time_rules.before_market_close(self._traded_asset, self._trade_exec_minute_offset), self.before_close ) def on_data(self, slice: Slice) -> None: if not self._rebalance_flag: return self._rebalance_flag = False if slice.contains_key(self._traded_asset) and slice[self._traded_asset]: if self.portfolio[self._traded_asset].invested: # close position 1 day before holidays if (self.time + BDay(self._offset_days[0])).date() in self._holidays_dates: self.liquidate() else: # open position 5 days before holidays if (self.time + BDay(self._offset_days[1])).date() in self._holidays_dates: quantity: int = self._notional_value // slice[self._traded_asset].price self.market_order(self._traded_asset, quantity) def before_close(self) -> None: self._rebalance_flag = True
# region imports from AlgorithmImports import * import json from traded_strategy import TradedStrategy # endregion class ObjectStoreHelper: def __init__( self, algorithm: QCAlgorithm, path: str ) -> None: """ Initializes ObjectStoreHelper with reference to the algorithm instance. """ self._algorithm: QCAlgorithm = algorithm self._path: str = path def save_state(self, state: Dict) -> None: """ Saves a dictionary `state` to the Object Store as JSON. """ if not self._algorithm.live_mode: return json_data = json.dumps(state) self._algorithm.object_store.save(self._path, json_data) self._algorithm.log(f"Saved state to Object Store: {json_data}") def load_state(self) -> Dict: """ Loads a JSON string from the Object Store and returns it as a dictionary. """ if self._algorithm.object_store.contains_key(self._path) and self._algorithm.live_mode: json_data = self._algorithm.object_store.read(self._path) if json_data: self._algorithm.log(f"Loaded state from Object Store: {json_data}") result: Dict = json.loads(json_data) result['trade_signal'] = {TradedStrategy._member_map_[key]: value for key, value in result['trade_signal'].items() if key in TradedStrategy._member_map_} return result else: return { 'trade_signal': { TradedStrategy.CALENDAR: False, TradedStrategy.REVERSAL_MODEL: False }, 'reversal_model_days_held': 0 } return {}
# region imports from AlgorithmImports import * from enum import Enum # endregion class TradedStrategy(Enum): FED_DAYS = 1 TOM = 2