Overall Statistics |
Total Trades 0 Average Win 0% Average Loss 0% Compounding Annual Return 0% Drawdown 0% Expectancy 0 Net Profit 0% Sharpe Ratio 0 Loss Rate 0% Win Rate 0% Profit-Loss Ratio 0 Alpha 0 Beta 0 Annual Standard Deviation 0 Annual Variance 0 Information Ratio 0 Tracking Error 0 Treynor Ratio 0 Total Fees $0.00 |
class AdjustmentTest(QCAlgorithm): def Initialize(self): self.SetStartDate(2012, 1, 1) self.SetEndDate(2012, 1, 8) self.SetCash(15000) # Constant definitions self.ASSET_UNDERLYING = 'SPY' self.ASSET_TRADE_LONG = 'AAPL' # Initialization process self._asset_underlying = self.AddEquity(self.ASSET_UNDERLYING, Resolution.Minute) # self._asset_trade_long = self.AddEquity(self.ASSET_TRADE_LONG, Resolution.Minute) self._asset_underlying.SetDataNormalizationMode(DataNormalizationMode.Raw) # self._asset_trade_long.SetDataNormalizationMode(DataNormalizationMode.Raw) self.Schedule.On( self.DateRules.EveryDay(self.ASSET_UNDERLYING), self.TimeRules.BeforeMarketClose(self.ASSET_UNDERLYING, 1), Action(self._print) ) stockPlot = Chart('Price Plot') stockPlot.AddSeries(Series(self.ASSET_UNDERLYING, SeriesType.Line, 0)) # stockPlot.AddSeries(Series(self.ASSET_TRADE_LONG, SeriesType.Line, 0)) self.AddChart(stockPlot) def _print(self): # Get all historic quotes underlying_price = float(self.Securities[self.ASSET_UNDERLYING].Close) # long_price = float(self.Securities[self.ASSET_TRADE_LONG].Close) self.Plot('Price Plot', self.ASSET_UNDERLYING, underlying_price) # self.Plot('Price Plot', self.ASSET_TRADE_LONG, long_price)