Overall Statistics |
Total Trades 0 Average Win 0% Average Loss 0% Compounding Annual Return 0% Drawdown 0% Expectancy 0 Net Profit 0% Sharpe Ratio 0 Probabilistic Sharpe Ratio 0% Loss Rate 0% Win Rate 0% Profit-Loss Ratio 0 Alpha 0 Beta 0 Annual Standard Deviation 0 Annual Variance 0 Information Ratio 0 Tracking Error 0 Treynor Ratio 0 Total Fees $0.00 |
# https://www.tradingview.com/script/TunYA7oc-Supertrend-1-0-with-Alerts/ # https://www.quantconnect.com/forum/discussion/3383/custom-indicator-in-python-algorithm/p1 from collections import deque from QuantConnect.Indicators import AverageTrueRange class CalibratedUncoupledProcessor(QCAlgorithm): def Initialize(self): self.SetStartDate(2020, 5, 4) # Set Start Date self.SetEndDate(2020, 5, 4) self.SetCash(100000) # Set Strategy Cash self.AddEquity("SPY", Resolution.Minute) self.superTrend = SuperTrend('custom', 3) superTrendConsolidator = TradeBarConsolidator(1) superTrendConsolidator.DataConsolidated += self.superTrendConsolidateHandler def OnData(self, data): self.Debug("-------time : {}----<br>".format(self.Time)) self.Debug(" up : {}<br>".format(self.superTrend.Up)) def superTrendConsolidateHandler(self, sender, bar): pass class SuperTrend: def __init__(self, name, period): self.Name = name self.Time = datetime.min self.IsReady = False self.Trend = 0 self.Up = 0 self.Down = 0 self.queue = deque(maxlen=period) self.atr = AverageTrueRange(period, MovingAverageType.Wilders) # def __repr__(self): # return "{0} -> IsReady: {1}. Time: {2}. Value: {3}".format(self.Name, self.IsReady, self.Time, self.Value) def Update(self, input): self.atr.Update(input) if self.atr.IsReady: self.queue.appendleft(input.Close) hl2 = (input.High - input.Low) / 2 self.Up = hl2 + (self.atr.Current.Value * 1.5) count = len(self.queue) self.IsReady = count == self.queue.maxlen