Overall Statistics
Total Trades
0
Average Win
0%
Average Loss
0%
Compounding Annual Return
0%
Drawdown
0%
Expectancy
0
Net Profit
0%
Sharpe Ratio
0
Probabilistic Sharpe Ratio
0%
Loss Rate
0%
Win Rate
0%
Profit-Loss Ratio
0
Alpha
0
Beta
0
Annual Standard Deviation
0
Annual Variance
0
Information Ratio
0
Tracking Error
0
Treynor Ratio
0
Total Fees
$0.00
Estimated Strategy Capacity
$0
Lowest Capacity Asset
from AlgorithmImports import *
from EnumFunc import *
import pandas as pd

class NasdaqAlpha(AlphaModel):
    
    def __init__(self, DataDict):
        
        self.DataDict = DataDict # Passed the Data Dictionary that contains all Futures
        self.ModelData = pd.DataFrame() # Contains percentChangeSeconds

        # Insights Related Variables       
        self.insights = []
        self.InsightDirectionDict = lambda s: {0:InsightDirection.Up, 1:InsightDirection.Down, 2:InsightDirection.Flat}[s]
        self.insightPeriod = None
        self.insightsTimeBySymbol = {} # dict to hold insight time
        self.previousBeforeMarketOpenSignals = None
        self.previousAfterMarketOpenSignals = None


    def updateModelData(self):
        
        for symbol in self.DataDict.keys():
            # self.yesterdayPercentChange only updates during Lumber hours
            if self.DataDict[symbol].yesterdayPercentChange:               
                # Captures every Second
                self.ModelData.loc[self.DataDict[symbol].algo.Time,symbol] = list(self.DataDict[symbol]._yesterdayPercentChange.values())[0]            
                # self.DataDict[symbol].algo.Debug(f"In AlphaModel{self.DataDict[symbol].algo.Time}:{self.ModelData.tail(1)}")
                
                # Chart Added
                self.DataDict[symbol].algo.Plot("NQ vs LBS", symbol, self.ModelData.loc[self.DataDict[symbol].algo.Time,symbol])

    def clearModelData(self):
        self.ModelData = pd.DataFrame()

    def saveModelData(self):
        dailyFileName =  f"ModelData_{self.DataDict['Lumber'].algo.Time.date()}"
        self.DataDict['Lumber'].algo.Debug(f"dailyFileName:{dailyFileName}")
        self.DataDict['Lumber'].algo.Debug(f"Length of ModelData b4 saving:{len(self.ModelData)}")
        self.DataDict['Lumber'].algo.ObjectStore.Save(f"{14153031}/{dailyFileName}", self.ModelData.to_json(date_unit='s'))
        

    # Handles security changes in from your universe model.
    def OnSecuritiesChanged(self, algorithm: QCAlgorithm, changes: SecurityChanges) -> None:
        
        # This code runs everytime there is a contract rollover but does it know which symbol has switched
        for changed_event in algorithm.CurrentSlice.SymbolChangedEvents.Values:
            algorithm.Debug(f"Contract rollover from (AM- OnSecuritiesChanged) {changed_event.OldSymbol} to {changed_event.NewSymbol}, Time:{algorithm.Time}")
            pass
        
        # Everytime Contract rollsOver (any Lumber or Nasdaq), the following line runs, but ...
        # algorithm.Debug(f"Count AM: {changes.Count}, changes:{changes}")
        
        # .. this code only runs Once at the very start not when future contracts roll!
        for security in changes.AddedSecurities:
            algorithm.Debug(f"In OnSecuritiesChanged(AM) @ DateTime:{algorithm.Time}, Mapped/ID: {security.Mapped}, Canonical: {security.Mapped.Canonical} \
            #  Symbol: {security.Symbol}, Value: {security.Mapped.Value}, SecurityType: {getSecurityType(security.Mapped.SecurityType)}")                          
            
            # Capture Nasdaq %age Change before Lumber Opens  
            algorithm.Schedule.On(algorithm.DateRules.EveryDay('/LBS'), algorithm.TimeRules.At(9,59,51),self.updateModelData)
            # Capture %age Change for Nasdaq & Lumber during Lumber Market Hours
            algorithm.Schedule.On(algorithm.DateRules.EveryDay('/LBS'), algorithm.TimeRules.Every(timedelta(seconds=1)),self.updateModelData)
            # Store Daily file from ModelData
            # algorithm.Schedule.On(algorithm.DateRules.EveryDay('/LBS'), algorithm.TimeRules.At(16,10,00),self.saveModelData)
            # clear self.ModelData
            algorithm.Schedule.On(algorithm.DateRules.EveryDay('/LBS'), algorithm.TimeRules.At(23,50,00),self.clearModelData)


        for security in changes.RemovedSecurities:
            pass


    def Update(self, algorithm, data):
        
        # https://www.quantconnect.com/docs/v2/writing-algorithms/datasets/quantconnect/us-futures-security-master#05-Data-Point-Attributes
        # This Code runs everytime there is a futures rollover
        # BEAWARE SymbolChangedEvents may also be linked to other events?
        # algorithm.Debug(f"data.SymbolChangedEvents.Keys:{data.SymbolChangedEvents.Keys}")

        # if data.Keys[0] == self.lumberDataClass.Symbol:
        for changed_event in data.SymbolChangedEvents.Values:
            algorithm.Debug(f"Contract rollover (AM- Update Method) from {changed_event.OldSymbol} to {changed_event.NewSymbol}")
            security  = data.Keys[0]             
            algorithm.Debug(f"In Update (AM) @ DateTime:{algorithm.Time}, security:{security}, ID:{security.ID},Canonical:{security.Canonical} \
                + Value:{security.Value},Underlying:{security.Underlying}. SecurityType:{getSecurityType(security.SecurityType)}")

        # or (algorithm.Time < self.DataDict['Lumber'].algo.signalStartTime or algorithm.Time > self.DataDict['Lumber'].algo.signalEndTime)

        # self.Signal only returns value if this is the first time or if position signal has changed
        insightPosition = self.Signal(algorithm)        
        if insightPosition is None: 
            return []

        # TODO:  Active for 5 Minutes after Market open - To Change
        # self.insightPeriod = timedelta(seconds = (self.DataDict['Lumber'].currentOpen + timedelta(minutes=5) - algorithm.Time).total_seconds())
        self.insightPeriod = timedelta(seconds = 1)

        # Insight(symbol, period, type, direction, magnitude=None, confidence=None, sourceModel=None, weight=None)
        nasdaqPercent = list(self.DataDict['Nasdaq']._yesterdayPercentChange.values())[0]
        self.insights.append(Insight(symbol = self.DataDict['Lumber'].Mapped, period = self.insightPeriod, \
        type = InsightType.Price, direction = insightPosition, \
        magnitude  = self.NasdaqPercentChangeToMagnitude(nasdaqPercent,self.DataDict['Lumber'].algo.lumberBetaToNasdaq), \
        confidence = self.NasdaqPercentChangeToConfidence(nasdaqPercent), \
        sourceModel=None, weight=None))

        return self.insights


    def Signal(self, algorithm):    
        symbol = 'Lumber'
        # Before Market Opens:            
        if self.DataDict['Nasdaq'].yesterdayPercentChange and algorithm.Time < self.DataDict[symbol].currentOpen: # If Not Empty
            algorithm.Debug(f"WORKS:1 @ {algorithm.Time}")            
            nasdaqPercent = list(self.DataDict['Nasdaq']._yesterdayPercentChange.values())[0]
            lumberPercent = list(self.DataDict[symbol]._yesterdayPercentChange.values())[0] if self.DataDict[symbol].yesterdayPercentChange else None
            # algorithm.Debug(f"before market open nasdaqchange:{nasdaqPercent} lumberchange:{lumberPercent}")
            # For now just using 1 condition in Checklist - see if 2 conditions are better
            check_list = [self.DataDict[symbol].bestBidMapped['price'],self.DataDict[symbol].bestAskMapped['price'],self.DataDict[symbol].WAPMapped]           
            condLongPreMarketOpen  = nasdaqPercent > self.DataDict[symbol].algo.nasdaqCutoff and sum(c > self.DataDict[symbol]._MappedYesterday.Current.Value for c in check_list) >=1
            condShortPreMarketOpen = nasdaqPercent < -self.DataDict[symbol].algo.nasdaqCutoff and sum(c < self.DataDict[symbol]._MappedYesterday.Current.Value for c in check_list) >=1
            # algorithm.Debug(f"before market open nasdaqconlong:{condLongPreMarketOpen} lumbercondshort:{condShortPreMarketOpen} previous:{self.previousBeforeMarketOpenSignals} shouldemit={self.ShouldEmitInsight(algorithm.Time,symbol)} cond:{(condLongPreMarketOpen, condShortPreMarketOpen) != self.previousBeforeMarketOpenSignals} condition:{[i for i, x in enumerate([condLongPreMarketOpen,condShortPreMarketOpen,not (condLongPreMarketOpen or condShortPreMarketOpen)]) if x][0]}")
         
            # The following code is to check if the Signal changed before market Open - if changed (or first time only) then return the InsightDirection else return None
            if (((condLongPreMarketOpen, condShortPreMarketOpen) != self.previousBeforeMarketOpenSignals) or (self.previousAfterMarketOpenSignals == None)) and self.ShouldEmitInsight(algorithm.Time,symbol):
                algorithm.Debug(f"WORKS:2 @ {algorithm.Time}")            
                self.previousBeforeMarketOpenSignals = (condLongPreMarketOpen, condShortPreMarketOpen)
                # returns 1 for Long, 0 for Flat, -1 for Short
                return self.InsightDirectionDict([i for i, x in enumerate([condLongPreMarketOpen,condShortPreMarketOpen,not (condLongPreMarketOpen or condShortPreMarketOpen)]) if x][0])
                
        # After Market Opens to say 2 hours before Market Close
        elif self.DataDict[symbol].yesterdayPercentChange and algorithm.Time > self.DataDict[symbol].currentOpen:
            algorithm.Debug(f"WORKS:3 @ {algorithm.Time}")            
        # elif algorithm.Time < (self.DataDict[symbol].currentClose - timedelta(hours=2)):
            nasdaqPercent = list(self.DataDict['Nasdaq']._yesterdayPercentChange.values())[0]
            lumberPercent = list(self.DataDict[symbol]._yesterdayPercentChange.values())[0] if self.DataDict[symbol].yesterdayPercentChange else None
            
            # For now just using 1 condition in Checklist - see if 2 conditions are better
            check_list = [self.DataDict[symbol].bestBidMapped['price'],self.DataDict[symbol].bestAskMapped['price'],self.DataDict[symbol].WAPMapped]           
        
            condLongPostMarketOpen = nasdaqPercent > self.DataDict[symbol].algo.nasdaqCutoff \
            and sum(c > self.DataDict[symbol]._tradeContinuous.price for c in check_list) >=1 \
            and lumberPercent > 0 and lumberPercent < 0.5 * (nasdaqPercent*self.DataDict[symbol].algo.lumberBetaToNasdaq)

            condShortPostMarketOpen = nasdaqPercent < -self.DataDict[symbol].algo.nasdaqCutoff \
            and sum(c < self.DataDict[symbol]._tradeContinuous.price for c in check_list) >=1 \
            and lumberPercent < 0 and lumberPercent > 0.5 * (nasdaqPercent*self.DataDict[symbol].algo.lumberBetaToNasdaq)

            # The following code is to check if the Signal changed after market Open - if changed (or first time only) then return the InsightDirection else return None
            if (condLongPostMarketOpen, condShortPostMarketOpen) != self.previousAfterMarketOpenSignals and self.ShouldEmitInsight(algorithm.Time,symbol):
                algorithm.Debug(f"WORKS:4 @ {algorithm.Time}")            
                self.previousAfterMarketOpenSignals = (condLongPostMarketOpen, condShortPostMarketOpen)
                # returns 1 for Long, 0 for Flat, -1 for Short
                return self.InsightDirectionDict([i for i, x in enumerate([condLongPostMarketOpen,condShortPostMarketOpen,not (condLongPostMarketOpen or condShortPostMarketOpen)]) if x][0])             

        return None
        
    # After every 1 seconds    
    def ShouldEmitInsight(self, utcTime, symbol):
        generatedTimeUtc = self.insightsTimeBySymbol.get(symbol)
    
        if generatedTimeUtc is not None:
            # we previously emitted a insight for this symbol, check it's period to see if we should emit another insight        
            if utcTime - generatedTimeUtc < timedelta(seconds=1):
                return False
        # we either haven't emitted a insight for this symbol or the previous insight's period has expired, so emit a new insight now for this symbol
        self.insightsTimeBySymbol[symbol] = utcTime
        return True

    # See Notes - Higher the NasdaqYesterday% Change, Higher confidence in Alpha Insight
    def NasdaqPercentChangeToConfidence(self, PercentChange):
        scores = {5: 0.9, 4: 0.75, 3: 0.6, 2: 0.45, 1: 0.3, 0: 0.15}
        abs_percent_change = abs(PercentChange)
        return scores[min(scores.keys(), key=lambda x: abs(x - abs_percent_change))]

    def NasdaqPercentChangeToMagnitude(self, PercentChange, multiplier):
        magnitude = PercentChange * multiplier
        return magnitude




        # After Market Opens - Till say 30 minutes before Close
        # Change to tradeMapped once we find a way to calculate it efficient;ly not using History
        # elif algorithm.Time >= self.DataDict[symbol].currentOpen and self.DataDict[symbol].tradeContinuous['price'] is not None:

        #     symbol = 'Lumber'
        #     algorithm.Debug(f"Algorithm Time:{algorithm.Time}")
        #     algorithm.Debug(f"OpenTime for:{symbol} ::{self.DataDict[symbol].currentOpen}")
        #     algorithm.Debug(f"Is AlgoTime >= OpenTime:{algorithm.Time >= self.DataDict[symbol].currentOpen}")
                        
        #     algorithm.Debug(f"Trade for:{symbol} ::{self.DataDict[symbol].tradeContinuous['price']}")
        #     algorithm.Debug(f"yesterdayPercentChange for Lumber ::{self.DataDict[symbol].yesterdayPercentChange}")



    # def Signal(self, algorithm):    
    #     for symbol in self.DataDict.keys():
    #         if self.DataDict[symbol].yesterdayPercentChange is not None:
    #             # algorithm.Debug(f"yesterdayPercentChange for:{symbol} Time:{algorithm.Time}::{self.DataDict[symbol]._yesterdayPercentChange}")

    #             if symbol == 'Lumber':
    #                 # Change to tradeMapped once we find a way to calculate it efficient;ly not using History
    #                 algorithm.Debug(f"Trade for:{symbol} ::{self.DataDict[symbol].tradeContinuous['price']}")


from AlgorithmImports import *
import math
from collections import deque
from EnumFunc import *
from functools import wraps


# A skeleton class for storing Futures Data - Shared by all Models

class DataClass:

    def __init__(self, Algorithm, continuous_contract):
        
        self.algo = Algorithm # This is Our Instance of QCAlgorithm
        # self.algo.UniverseSettings.ExtendedMarketHours = True

        # https://www.quantconnect.com/docs/v2/writing-algorithms/securities/asset-classes/futures/requesting-data#09-Properties
        self.continuous_contract = continuous_contract

        # Symbols for securities:
        self.Symbol = self.continuous_contract.Symbol 
        self.tickSize = self.continuous_contract.SymbolProperties.MinimumPriceVariation
        
        # Index, askclose, askhigh, asklow, askopen, asksize, bidclose, bidhigh, bidlow, bidopen, bidsize, close, high, low, open, volume)
        # Index, Value:(Timestamp('2022-11-15 00:00:00'), 'LBS Y3IN813DW4QP', Timestamp('2022-10-26 19:00:00'))
        self.yesterday = dotdict(dict.fromkeys(['open', 'high', 'low', 'close', 'volume']))
        
        # Make sure to use self.Mapped and not self.Symbol since using BackwardPanama
        self.lastBid = dotdict(dict.fromkeys(['time', 'price', 'size']))
        self.lastAsk = dotdict(dict.fromkeys(['time','price', 'size']))
        
        self._bestBid = dotdict(dict.fromkeys(['time', 'price', 'size']))
        self._bestAsk = dotdict(dict.fromkeys(['time','price', 'size']))
        self._trade = dotdict(dict.fromkeys(['time','price', 'size']))

        # self.trade = dotdict(dict.fromkeys(['time','price', 'size']))

        self._WAP = None
                

        # https://www.quantconnect.com/docs/v2/writing-algorithms/indicators/supported-indicators/average-true-range
        # This should be yesterday's
        # self.atr = self.algo.ATR(self.Symbol, Resolution.Daily)    
        
        # quoteEvent is triggered everytime a new Quote is placed not only when the best quote is changed/placed- I think?
        # self.quoteEvent = TickQuoteBarConsolidator(1)
        # self.quoteEvent.DataConsolidated += self.quoteEventHandler
        # self.algo.SubscriptionManager.AddConsolidator(self.Symbol, self.quoteEvent)

        # tradeEvent is triggered everytime a Trade is placed?
        # self.tradeEvent = TickConsolidator(1)
        # self.tradeEvent.DataConsolidated += self.tradeEventHandler
        # self.algo.SubscriptionManager.AddConsolidator(self.Symbol, self.tradeEvent)

        # To Update Yesterday: At Midnight the contract Rolls and pulls the correct data for Lumber - The issue is other futures may have different Open Close timings
        # self.algo.Schedule.On(self.algo.DateRules.EveryDay(), self.algo.TimeRules.Midnight, self.updateYesterday)

        # Update at a specific Time - Symbol agnostic - This is 10 minutes before Lumber Open - Change when daylight savings
        # self.algo.Schedule.On(self.algo.DateRules.EveryDay(), self.algo.TimeRules.At(8,59), self.updateYesterday)        

        # Get Yesterday's Settlement - Make it a Property
        # self.Securities[self.lumber.Mapped].Expiry # Get contract's expiry?

        # Update Yesterday Price 10 minutes before Market Opens - Can even use 'LBS' in TimeRules.AfterMarketOpen
        self.algo.Schedule.On(self.algo.DateRules.EveryDay(self.Symbol), self.algo.TimeRules.AfterMarketOpen(self.Symbol, -10), self.updateYesterday)

        # Reset BBO dicts 10 minutes after market close - Not sure if it impacts extendedMarketHours
        self.algo.Schedule.On(self.algo.DateRules.EveryDay(self.Symbol), self.algo.TimeRules.BeforeMarketClose(self.Symbol, -10), self.resetTickDict)

        # Nasdaq - closes at 4 pm & opens at 8:30 Chicago, Also trades at 11 pm till not sure when?
        # OnSecuritiesChanged: Date:2022-12-19 23:00:00, security:MNQ Y6URRFPZ86BL


    def quoteEventHandler(self, sender: object, Qbar: QuoteBar) -> None:

        if self.algo.CurrentSlice.Ticks.ContainsKey(self.Symbol) and self.algo.CurrentSlice.Ticks[self.Symbol] is not None:
            ticks = self.algo.CurrentSlice.Ticks[self.Symbol]
            for tick in ticks:
                tick_type = getTickType(tick.TickType)
                if tick_type == 'Quote':
                                        
                    if int(getattr(self.algo.Securities[self.Mapped], 'AskSize')) != 0: 
                        for key,prop in zip(list(self._bestAsk.keys()),['LocalTime','AskPrice', 'AskSize']):
                            setattr(self._bestAsk,str(key),getattr(self.algo.Securities[self.Mapped], prop))

                    if int(getattr(self.algo.Securities[self.Mapped], 'BidSize')) != 0: 
                        for key,prop in zip(list(self._bestBid.keys()),['LocalTime','BidPrice', 'BidSize']):
                            setattr(self._bestBid,str(key),getattr(self.algo.Securities[self.Mapped], prop))

                    # Code to store Last Bid & Ask - switching it off for the time being
                    # if int(getattr(tick, 'AskPrice')) != 0: 
                    #     # In DateTime - microseconds missing leading zeros in our dict versus reported
                    #     for key,prop in zip(list(self.lastAsk.keys()),['EndTime','AskPrice', 'AskSize']):
                    #         setattr(self.lastAsk,str(key),getattr(tick, prop))
                        
                    # if int(getattr(tick, 'BidPrice')) != 0: 
                    #     for key,prop in zip(list(self.lastBid.keys()),['EndTime','BidPrice', 'BidSize']):
                    #         setattr(self.lastBid,str(key),getattr(tick, prop))



    def tradeEventHandler(self, sender: object, Tbar: TradeBar) -> None:
        
        if self.algo.CurrentSlice.Ticks.ContainsKey(self.Symbol) and self.algo.CurrentSlice.Ticks[self.Symbol] is not None:
            ticks = self.algo.CurrentSlice.Ticks[self.Symbol]
            for tick in ticks:
                tick_type = getTickType(tick.TickType)
                if tick_type == 'Trade':
                    self.algo.tradeCount += 1
                    if int(getattr(tick, 'Quantity')) != 0:
                        for key,prop in zip(list(self.trade.keys()),['EndTime','Price','Quantity']):
                            setattr(self.trade,str(key),getattr(tick, prop))                            


    # Resetting Best Bid/Ask at MarketClose
    def resetTickDict(self):

        # Resetting After Market Close
        # self.lastAsk = self.lastAsk.fromkeys(self.lastAsk, None)
        # self.lastBid = self.lastBid.fromkeys(self.lastBid, None)

        self._bestAsk = self._bestAsk.fromkeys(self._bestAsk, None)
        self._bestBid = self._bestBid.fromkeys(self._bestBid, None)
        self._trade = self._trade.fromkeys(self._trade, None)
        self._WAP = None

        # self.algo.Debug(f"Ask Reset:{self.Symbol} :{self.algo.Time}:{self._bestAsk}")
        # self.algo.Debug(f"Bid Reset :{self.Symbol} :{self.algo.Time}:{self._bestBid}")
        # self.algo.Debug(f"Trade Reset :{self.Symbol} :{self.algo.Time}:{self._trade}")


    def updateYesterday(self):

        # self.algo.Debug(f"Updated Yesterday price for:{self.Symbol} @ {self.algo.Time}")
        
        # Stores Contracts Yesterday's OHCLV
        # Note that Volume doesn't match with reported in our Database (atleast for Lumber)
        
        if self.Mapped is not None:
            # self.algo.Debug(f"ctrctHistory Symbol:{self.Mapped},{self.continuous_contract}")

            ctrctHistory = self.algo.History(self.Mapped, 1, Resolution.Daily )   
            for bar in ctrctHistory.itertuples():
                for property in ['open', 'high', 'low', 'close', 'volume']:
                    if not math.isnan(float(getattr(bar, property))): # Required since updateYesterday is called even on Non trading days
                        self.yesterday[str(property)] = getattr(bar, property)

                # for prop in dir(bar):
                #     value = getattr(bar, prop)
                #     self.algo.Debug(f"prop:{prop}, value:{value}")
                        # Checking if we get same data
                        # if self.algo.CurrentSlice[self.Mapped].High is not None:
                        #     self.algo.Debug(f"{self.algo.CurrentSlice[self.Mapped].High}")


    # RealOnly RealTime 
    @property
    def Mapped(self):
        return getattr(self.continuous_contract, 'Mapped')


    @property
    def Canonical(self):
        return getattr(self.Symbol, 'Canonical')

    # @property
    def Underlying(self):
        return getattr(self, 'Underlying')


    @property
    def bestBid(self):

        # Not using this since somehow when we club 2 futures, this wasn't updating correctly or giving None
        # Also using getattr(self.algo.Securities[self.Mapped], prop)) instead of 
        # if self.algo.CurrentSlice.Ticks.ContainsKey(self.Symbol) and self.algo.CurrentSlice.Ticks[self.Symbol] is not None:
        #     ticks = self.algo.CurrentSlice.Ticks[self.Symbol]
        #     for tick in ticks:
        #         tick_type = getTickType(tick.TickType)
        #         if tick_type == 'Quote' and int(getattr(self.algo.Securities[self.Mapped], 'BidSize')) != 0: 
        #             for key,prop in zip(list(self._bestBid.keys()),['LocalTime','BidPrice', 'BidSize']):
        #                 setattr(self._bestBid,str(key),getattr(self.algo.Securities[self.Mapped], prop))

        # Only updating if Bid price and Size changed so as to keep the original Time of last update
        if int(getattr(self.algo.Securities[self.Mapped], 'BidSize')) != 0 and not self.alreadyUpdated('BidPrice', 'BidSize', self._bestBid):
            for key,prop in zip(list(self._bestBid.keys()),['LocalTime','BidPrice', 'BidSize']):
                setattr(self._bestBid,str(key),getattr(self.algo.Securities[self.Mapped], prop))

        return self._bestBid



    @property
    def bestAsk(self):
        
        # Only updating if Ask price and Size changed so as to keep the original Time of last update
        if int(getattr(self.algo.Securities[self.Mapped], 'AskSize')) != 0 and not self.alreadyUpdated('AskPrice', 'AskSize', self._bestAsk):
            for key,prop in zip(list(self._bestBid.keys()),['LocalTime','AskPrice', 'AskSize']):
                setattr(self._bestAsk,str(key),getattr(self.algo.Securities[self.Mapped], prop))

        return self._bestAsk


    # This is not entirely correct as someone may have canceled and others may have added a bid with net being affect 0 
    def alreadyUpdated(self, price, size, dictionary):
        return getattr(self.algo.Securities[self.Mapped], price) == dictionary.price and getattr(self.algo.Securities[self.Mapped], size) == dictionary.size
        
    
    @property
    def trade(self):
        
        # TO DO: Need to make it work like Quotes - Ask/Bid - getattr(self.algo.Securities[self.Mapped], prop))

        # Ideally this should use self.Mapped but it doesn't take that. 

        if self.algo.CurrentSlice.Ticks.ContainsKey(self.Symbol) and self.algo.CurrentSlice.Ticks[self.Symbol] is not None:
            ticks = self.algo.CurrentSlice.Ticks[self.Symbol]

            for tick in ticks:
                tick_type = getTickType(tick.TickType)
                if tick_type == 'Trade' and int(getattr(tick, 'Quantity')) != 0:
                    for key,prop in zip(list(self._trade.keys()),['Time','Price','Quantity']):
                        setattr(self._trade,str(key),getattr(tick, prop))
                        # setattr(self._trade,str(key),getattr(self.algo.Securities[self.Mapped], prop))

        # https://www.quantconnect.com/docs/v2/writing-algorithms/historical-data/history-requests

        # end_time = self.algo.Time
        # start_time = end_time  - timedelta(seconds=1)
        
        
        # ticks = self.algo.History[Tick](self.Mapped, start_time, end_time, Resolution.Tick)
        # count = 0
        # # self.algo.Debug(f"type of ticks:{type(Ticks)}")
        # for tick in ticks:
        #     if getTickType(tick.TickType) == 'Trade':
        #         self.algo.Debug(f"tick{count}:{tick}")
        #         count +=1
            
                # if getTickType(tick.TickType) == 'Trade':
                #     for prop in dir(tick):
                #         try:
                #                 value = getattr(tick, prop)
                #                 self.algo.Debug(f"Tprop:{prop}, Tvalue:{value}")
                #         except:
                #             pass

                #         tick.set_Symbol(self.Mapped)

            # tick_type = getTickType(tick.TickType)
            #  and int(getattr(tick, 'Quantity')) != 0
            # if tick_type == 'Trade':
            #     count +=1
            #     dic = {k:getattr(tick, k) for k in ['EndTime','Price','Quantity'] if getattr(tick, k) is not None}
            #     # self.algo.Debug(f"Tickcount:{count}, time:{self.algo.Time} {dic}")

            #     for key,prop in zip(list(self._trade.keys()),['EndTime','Price','Quantity']):                       
            #         setattr(self._trade,str(key),getattr(tick, prop))
        
        return self._trade


    @property
    def WAP(self):

        if None not in (self.bestAsk.size,self.bestBid.size):
            self._WAP = round(((self.bestBid.price * self.bestAsk.size) + (self.bestAsk.price * self.bestBid.size))/(self.bestBid.size + self.bestAsk.size),1)
            
        return self._WAP
        
        
    # @property
    # def Bid(self):
    #     return self._Bid
        
    # @Bid.setter
    # def Bid(self, bid):
    #     # if bid == 0 or bid is None:
    #         # self._Bid = 0  # Pull this from other rolling?
    #         # pass
    #     # self._Bid = bid

    #     # self.WAP = None # Invalidate previously Calculated WAP
    #     # return self._Bid
    #     pass





# Links to documentation pertaining 

# Time Modeling
# https://www.quantconnect.com/docs/v2/writing-algorithms/key-concepts/time-modeling/timeslices#03-Properties

# Futures - Handling Data
# https://www.quantconnect.com/docs/v2/writing-algorithms/securities/asset-classes/futures/handling-data


# To get the current Slice object, define an OnData method or use the CurrentSlice property of your algorithm (outside of the OnData method).
# If the data object doesn't contain any market data but it contains auxiliary data, the slice.ContainsKey(symbol) method can return true while slice[symbol] returns None.


class dotdict(dict):
    """dot.notation access to dictionary attributes"""
    __getattr__ = dict.get
    __setattr__ = dict.__setitem__
    __delattr__ = dict.__delitem__

# region imports
from AlgorithmImports import *
from AlphaModel import *
from DataClass import *
import math 

class NasdaqStrategy(QCAlgorithm):

    def Initialize(self):

        self.SetStartDate(2022,12,19)
        self.SetEndDate(2023,1,5)
        self.SetCash(100000)
        self.SetTimeZone(TimeZones.Chicago)  # If TimeZone is Chicago - Algo Time and Data End Time are same at 1800 hours
        self.SetWarmUp(timedelta(days=1))

        self.Data = {}
        # FutureSymbols = {'Lumber':Futures.Forestry.RandomLengthLumber,'Nasdaq':Futures.Indices.NASDAQ100EMini}
        FutureSymbols = {'Lumber':Futures.Forestry.RandomLengthLumber}

        # For Nasdaq we need DataMappingMode.OpenInterest or LastTradingDay - How to change?
        
        for key, value in FutureSymbols.items():
            
            dataMappingMode_ = DataMappingMode.FirstDayMonth if key == 'Lumber' \
            else DataMappingMode.OpenInterest if key == 'Nasdaq' else DataMappingMode.LastTradingDay

            # dataMappingMode_ = DataMappingMode.FirstDayMonth if key == 'Lumber' \
            # else DataMappingMode.LastTradingDay
            
            # BackwardsPanamaCanal

            future = self.AddFuture(value, Resolution.Tick,dataMappingMode = dataMappingMode_, contractDepthOffset=0, 
            dataNormalizationMode = DataNormalizationMode.Raw, extendedMarketHours=True, fillDataForward = True)
            self.Data[key] = DataClass(self, future) # Initiating DataClass for each Future & Passing our instance of QCAlgorithm Class
        
        
        # NOT SURE IF WORKING CORRECTLY
        # To trade the contract in the same time step you subscribe to the contract - Since GetLastKnowPrice makes a history request, it may slow the algorithm down.
        # self.SetSecurityInitializer(lambda x: x.SetMarketPrice(self.GetLastKnownPrice(x)))
        
        # Set alpha model - This also gives you access to the AlphaModel Instance
        # self.alpha = NasdaqAlpha(self.Data['Lumber'])  
        # self.SetAlpha(self.alpha)

        # Printing Yesterday data 
        # self.Schedule.On(self.DateRules.EveryDay(self.Data['Lumber'].Symbol), self.TimeRules.AfterMarketOpen(self.Data['Lumber'].Symbol, -1), self.beforeLumberOpen)
        self.Schedule.On(self.DateRules.EveryDay(), self.TimeRules.At(8,55), self.beforeLumberOpen)
        # self.TimeRules.BeforeMarketClose(symbol: Symbol, minutesBeforeClose: float = 0, extendedMarketOpen: bool = False)
        self.tradeCount = 0

        # Check Entry Condition only 30 seconds prior to Market Open
        self.entryTimeStart = self.Time.replace(hour=9, minute=0, second=0, microsecond=55000)
        self.entryTimeEnd   = self.Time.replace(hour=9, minute=1, second=0, microsecond=0)

       
    def beforeLumberOpen(self):

        if self.IsWarmingUp: return
        
        # Works - Get Yesterdays' data keeping in mind Rolled Over Contracts
        for symbol in self.Data.keys():
            # self.Debug(f"Yester Time:{self.Time}, {self.Data[symbol].Mapped}.yesterday:{self.Data[symbol].yesterday}")
            pass
        
        # Works
        # for security in self.ActiveSecurities.Values:
        #     self.Debug(f"self.Time:{self.Time} ActiveSecurity:{security}")


    def OnSecuritiesChanged(self, changes: SecurityChanges) -> None:
        
        # Only runs at the start of program not when Contract rolls 
        for security in changes.AddedSecurities:
            if len(changes.AddedSecurities) == 0: return
            self.Debug(f"In Main: OnSecuritiesChanged: Date:{self.Time}, security:{changes.AddedSecurities[0].Mapped}")

    def OnEndOfDay(self, symbol):
        # self.Debug(f"OnEndOfDay self.Time:{self.Time}, Symbol:{self.Data['Lumber'].Mapped.Value}")
        pass
                        
    def OnData(self, data):    

        # Useless
        # self.Debug("Hello")
        # for chain in data.FutureChains:
        #     contracts = list(chain.Value)
        #     self.Debug(f"Last contracts: {contracts}")
        #     for contract in contracts:
        #         self.Debug(f"contract:{contract}, Last Price: {contract.LastPrice}")
        
        # https://www.quantconnect.com/docs/v2/writing-algorithms/historical-data/warm-up-periods#03-Warm-Up-Vs-Reality
        #  In OnData: Don't run if the indicators aren't ready
        if self.IsWarmingUp: return
        
        # Below code important to compare Ticks with whats reported from DataClass
        tickTradeProps = ['LastPrice','Quantity']
        tickQuoteProps = ['BidPrice','BidSize','AskPrice','AskSize']
        # tickOIProps = ['Value']  # Not Getting Data for OpenInterest
        
        # for k in data.Ticks.Keys:
        #     self.Debug(f"keys:{k}")
        #     self.Debug(f"Underlying:{k.Underlying}")
        #     if data.Ticks.ContainsKey(k) and data.Ticks[k] is not None:
        #         self.Debug("yes")



        for security in data.Keys:

            # if self.Time < self.entryTimeStart or self.Time > self.entryTimeEnd: return
            # pass
            # self.Debug(f"security:{security}")
            # for prop in dir(security):
            #     value = getattr(security, prop)
            #     self.Debug(f"prop:{prop}, value:{value}")

            if security == self.Data['Lumber'].Mapped:
                self.Debug(f"security Matched:{security}")
                
            if data.Ticks.ContainsKey(security) and data.Ticks[security] is not None:
                ticks = data.Ticks[security]
                for tick in ticks:
                    previous_time = self.Time
                    tick_type = getTickType(tick.TickType)
                    if tick_type == 'Trade' and int(getattr(tick, 'Quantity')) != 0:

                        # This is for Trade Data
                        dic = {k:getattr(tick, k) for k in tickTradeProps if getattr(tick, k) is not None}
                        self.Debug(f"TradeTick:{self.Time} {dic}")
                        # self.Debug(f"self.Data['Lumber'].Underlying:{self.Data['Lumber'].Underlying} ")
                                             
                    # elif tick_type == 'Quote':
                        # This if for Last Bid & Ask
                        # dic = {k:getattr(tick, k) for k in tickQuoteProps if getattr(tick, k) is not None}
                        # self.Debug(f"*QuoteTick*: {self.Time}, security:{security},  {dic}")

                        # This if for Best Bid & Ask
                        # dic2 = {k:getattr(self.Securities[security], k) for k in tickQuoteProps} 
                        # self.Debug(f"+QuoteTick2+:{self.Time}, security:{security},  {dic2}")
                        
            
        for symbol in self.Data.keys():
            
            if self.Time < self.entryTimeStart or self.Time > self.entryTimeEnd: return

            # self.Debug(f"SYMBOL:{symbol}")            
            # self.Debug(f"++BestBid:{symbol}:{self.Time}:{self.Data[symbol].bestBid}")
            # self.Debug(f"^^BestAsk:{symbol}:{self.Time}:{self.Data[symbol].bestAsk}")
            
            self.Debug(f"**trade:{symbol}:{self.Time}:{self.Data[symbol].trade}")
            # self.Debug(f"**WAP:{symbol}:{self.Time}:{self.Data[symbol].WAP}")            
            # self.Debug(f"**ATR:{symbol}:{self.Time}:{self.Data[symbol].atr.Current.Value}")

            # self.Debug(f"**LastAsk:{self.Data[symbol].lastAsk}")            
            # self.Debug(f"**LastBid:{self.Data[symbol].lastBid}")

            # self.Debug(f" BestBid == LastBid:{self.Data[symbol].bestBid.price == self.Data[symbol].lastBid.price}")
            # self.Debug(f" BestAsk == LastAsk:{self.Data[symbol].bestAsk.price == self.Data[symbol].lastAsk.price}")
                    

        # Just to check if FuncSecuritySeeder gets us GetLastKnownPrices
        # for security in self.ActiveSecurities.Values:
            # self.Debug(f"Todays Close:{self.Securities[security.Symbol].Close}, Date:{self.Time}, security:{security}")
            # if security == 'LBS Y54QLJOCEN7L':
            
            # self.Debug(f"Mapped:{self.Data['Lumber'].Mapped}")
            # self.Debug(f"security == self.Data['Lumber'].Mapped:{security.Symbol == self.Data['Lumber'].Mapped}")
            # if security.Symbol == self.Data['Lumber'].Mapped:
            #     self.Debug(f"Todays Close:{self.Securities[security.Symbol].Close}, Date:{self.Time}, security:{security}")
            #     self.Debug("Yes")
            #     b = self.Securities[self.Data['Lumber'].Mapped]
            #     for prop in dir(b):
            #         value = getattr(b, prop)
            #         self.Debug(f"prop11:{prop}, value:{value}")  


        # WORKS - Remove from here since updated several times in a day
        # self.Debug(f"Todays ____Close:{self.Securities[self.Data['Lumber'].Mapped].Price}, Date:{self.Time}")
       
 
        
        if data.Ticks.ContainsKey(self.Data['Lumber'].Mapped):
            if data.Ticks[self.Data['Lumber'].Symbol] is not None:                
                self.Debug(f"**MAIN** Date:{self.Time}, MappedValue:{self.Data['Lumber'].Mapped.Value}, MappedID:{self.Data['Lumber'].Mapped.ID}, ") 


        #         b = data.Bars[self.Data['Lumber'].Mapped] 
        #         for prop in dir(b):
        #             value = getattr(b, prop)
        #             self.algo.Debug(f"prop:{prop}, value:{value}")         


        # Works
        # if data.Ticks.ContainsKey(self.Data['Lumber'].Symbol):
        #     if data.Ticks[self.Data['Lumber'].Symbol] is not None:                
                # self.Debug(f"**MAIN** Date:{self.Time}, MappedValue:{self.Data['Lumber'].Mapped.Value}, MappedID:{self.Data['Lumber'].Mapped.ID}, ")             

        # https://www.quantconnect.com/docs/v2/writing-algorithms/datasets/quantconnect/us-futures-security-master#05-Data-Point-Attributes        
        for symbol in self.Data.keys():
            if data.SymbolChangedEvents.ContainsKey(self.Data[symbol].Symbol):
                symbolChangedEvent = data.SymbolChangedEvents[self.Data[symbol].Symbol]
                self.Debug(f"In MAIN Symbol changed: {symbolChangedEvent.OldSymbol} -> {symbolChangedEvent.NewSymbol} \
                EndTime:{symbolChangedEvent.EndTime} DataType:{getDataType(symbolChangedEvent.DataType)}, Expiry: {self.Securities[self.Data[symbol].Mapped].Expiry}")

        

        # if data[self.Data['Lumber'].Mapped] is not None:
        #     self.Debug(f"data123Map: {data[self.Data['Lumber'].Mapped]}")


             
    # When your algorithm stops executing, LEAN calls the OnEndOfAlgorithm method.
    def OnEndOfAlgorithm(self) -> None:
        # self.Debug(f"self.Alpha.securities:{self.alpha.securities}")
        # self.Debug(f"self.count:{self.count}")
        self.Debug(f"self.TradeCount:{self.tradeCount}")
        


    def OnWarmUpFinished(self) -> None:
        self.Debug(f"Algorithm Ready@{self.Time}")
        pass


        
#region imports
from AlgorithmImports import *
#endregion
#region imports
from AlgorithmImports import *
#endregion



# Your New Python File
class Cash(PythonData):
    def GetSource(self,
         config: SubscriptionDataConfig,
         date: datetime,
         isLive: bool) -> SubscriptionDataSource:
        source="https://northamerica-northeast1-cross-asset-other-commodities.cloudfunctions.net/http_api?src=cwpenergy&data=cash"
        return SubscriptionDataSource(source, SubscriptionTransportMedium.RemoteFile,FileFormat.UnfoldingCollection)

    def Reader(self,
         config: SubscriptionDataConfig,
         line: str,
         date: datetime,
         isLive: bool) -> BaseData:

     
        objects = []
        data = json.loads(line)

        if len(data) == 0:
            return None

        for datum in data:
            
            index = Cash()
            index.Symbol = config.Symbol
            index.Time = datetime.strptime(datum["valdate"], "%Y-%m-%d")
            index.EndTime = index.Time + timedelta(1)
            index.Value= float(datum["settle_fin"])
            index["code"] = str(datum["code"])
            index["year"] =int(datum["year"])
            index["month"]=int(datum["month"])
            index["week"]=int(datum["week"])
            index["date"]=datetime.strptime(datum["pubdate"], '%Y-%m-%d')
            index["cmeexpiry"]=datetime.strptime(datum["cme_exp"], '%Y-%m-%d')
            index["basis"]=float(datum["basis"])
            index["settlefin"]=float(datum["settle_fin"])
            index["settlephys"]=float(datum["settle_phys"])
            index["shortdesc"]=str(datum["shortdesc"])
            index["season"]=str(datum["season"])
            index["length"]=str(datum["length"])
            index["grade"]=str(datum["grade"])
            index["size"]=str(datum["size"])
            index["season"]=str(datum["season"])
            index["pricepoint"]=str(datum["pricepoint"])
            index["dest"]=str(datum["dest"])
            index["origin"]=str(datum["origin"])
            index["finish"]=str(datum["finish"])
            
            objects.append(index)

        return BaseDataCollection(objects[-1].EndTime, config.Symbol, objects)



      
class Settled(PythonData):
    ''' Settled Price Lumber'''

    def GetSource(self, config, date, isLive):
        source = "http://northamerica-northeast1-cross-asset-other-commodities.cloudfunctions.net/http_api?src=cwpenergy&data=settledprice&contract=1"
        return SubscriptionDataSource(source, SubscriptionTransportMedium.RemoteFile,FileFormat.UnfoldingCollection)


    def Reader(self, config, line, date, isLive):
        objects = []
        data = json.loads(line)
        for datum in data:
            try:
                index = Settled()
                index.Symbol = config.Symbol
                index.Time = datetime.strptime(datum["date"], "%Y-%m-%d")
                index.EndTime = index.Time + timedelta(1)
                index.Value=float(datum["settle_price"])
                index["date"]=datum["date"]
                index["ranking"] = str(datum["ranking"])
                index["openingprice"] =float(datum["opening_price"])
                index["dayhighprice"]=float(datum["day_high_price"])
                index["daylowprice"]=float(datum["day_low_price"])
                index["settleprice"]=float(datum["settle_price"])
                index["prevdayvol"]=float(datum["prev_day_vol"])
                index["prevdayopeninterest"]=float(datum["prev_day_open_interest"])
                index["mmy"]=datetime.strptime(datum["mmy"], '%Y-%m-%d')
                index["maturity"]=datetime.strptime(datum["maturity_date"], '%Y-%m-%d')

                objects.append(index)

            except Exception as e:
                # Do nothing, possible error in json decoding
                raise e

        return BaseDataCollection(objects[0].Time,objects[-1].EndTime, config.Symbol, objects)


class Western(PythonData):
   
    def GetSource(self, config, date, isLive):
        source = "https://northamerica-northeast1-cross-asset-other-commodities.cloudfunctions.net/http_api?src=lumberdatasources&data=wwpa&tbl=barometer_western"
        return SubscriptionDataSource(source, SubscriptionTransportMedium.RemoteFile,FileFormat.UnfoldingCollection)


    def Reader(self, config, line, date, isLive):
        objects = []
        data = json.loads(line)
        for datum in data:
            try:
                index = Western()
                index.Symbol = config.Symbol
                index.Time = datetime.strptime(datum["Timestamp"], "%Y-%m-%d")
                index.EndTime=index.Time + timedelta(1)
                index.Value=float(datum["Inventories"])
                index["date"]=datum["Timestamp"]
                index["Inventories"] = str(datum["Inventories"])
                index["Month"] =int(datum["Month"])
                index["Orders"]=int(datum["Orders"])
                index["Production"]=int(datum["Production"])
                index["Shipments"]=int(datum["Shipments"])
                index["Unfilled"]=int(datum["Unfilled"])
                index["Year"]=int(datum["Year"])
                index["Day"]=int(datum["Day"])
               
                objects.append(index)

            except Exception as e:
                # Do nothing, possible error in json decoding
                raise e

        return BaseDataCollection(objects[0].Time,objects[-1].Time, config.Symbol, objects)


class Disaggregated(PythonData):
    '''Disaggregated Custom Data Class'''
    def GetSource(self, config: SubscriptionDataConfig, date: datetime, isLiveMode: bool) -> SubscriptionDataSource:
        source = "https://northamerica-northeast1-cross-asset-other-commodities.cloudfunctions.net/http_api?src=lumberdatasources&data=cot&tbl=disaggregated"
        return SubscriptionDataSource(source, SubscriptionTransportMedium.RemoteFile,FileFormat.UnfoldingCollection)

    def Reader(self, config: SubscriptionDataConfig, line: str, date: datetime, isLiveMode: bool) -> BaseData:

      
        objects = []
        data = json.loads(line)

        if len(data) == 0:
            return None

        for datum in data:

            try:
            
                index = Disaggregated()
                index.Symbol = config.Symbol
                index.Time = datetime.strptime(datum["Date"], "%Y-%m-%d")
                index.EndTime = index.Time + timedelta(1)
                index.Value= float(datum["M_Money_Positions_Long_All"])
                index["Date"]=datum["Date"]
                index["Mmoneypositionslongall"]=float(datum["M_Money_Positions_Long_All"])
                index["MMoneyPositionsLongOld"]=float(datum["M_Money_Positions_Long_Old"])
                index["MMoneyPositionsLongOther"]=float(datum["M_Money_Positions_Long_Other"])
                index["MMoneyPositionsShortAll"]=float(datum["M_Money_Positions_Short_All"])
                index["MMoneyPositionsShortOld"]=float(datum["M_Money_Positions_Short_Old"])
                index["MMoneyPositionsShortOther"]=float(datum["M_Money_Positions_Short_Other"])
                index["MMoneyPositionsSpreadAll"]=float(datum["M_Money_Positions_Spread_All"])
                index["MMoneyPositionsSpreadOld"]=float(datum["M_Money_Positions_Spread_Old"])
                index["MMoneyPositionsSpreadOther"]=float(datum["M_Money_Positions_Spread_Other"])
                index["NonReptPositionsLongAll"]=float(datum["NonRept_Positions_Long_All"])
                index["NonReptPositionsLongOld"]=float(datum["NonRept_Positions_Long_Old"])
                index["NonReptPositionsLongOther"]=float(datum["NonRept_Positions_Long_Other"])
                index["NonReptPositionsShortAll"]=str(datum["NonRept_Positions_Short_All"])
                index["NonReptPositionsShortOld"]=float(datum["NonRept_Positions_Short_Old"])
                index["NonReptPositionsShortOther"]=float(datum["NonRept_Positions_Short_Other"])
                index["OpenInterestAll"]=float(datum["Open_Interest_All"])
                index["OpenInterestOld"]=float(datum["Open_Interest_Old"])
                index["OpenInterestOther"]=float(datum["Open_Interest_Other"])
                index["OtherReptPositionsLongAll"]=float(datum["Other_Rept_Positions_Long_All"])
                index["OtherReptPositionsLongOld"]=float(datum["Other_Rept_Positions_Long_Old"])
                index["OtherReptPositionsShortAll"]=float(datum["Other_Rept_Positions_Short_All"])
                index["OtherReptPositionsShortOld"]=float(datum["Other_Rept_Positions_Short_Old"])
                index["OtherReptPositionsShortOther"]=float(datum["Other_Rept_Positions_Short_Other"])
                index["OtherReptPositionsSpreadAll"]=float(datum["Other_Rept_Positions_Spread_All"])
                index["OtherReptPositionsSpreadOld"]=float(datum["Other_Rept_Positions_Spread_Old"])
                index["OtherReptPositionsSpreadOther"]=float(datum["Other_Rept_Positions_Spread_Other"])
                index["ProdMercPositionsLongAll"]=float(datum["Prod_Merc_Positions_Long_All"])
                index["ProdMercPositionsLongOld"]=float(datum["Prod_Merc_Positions_Long_Old"])
                index["ProdMercPositionsLongOther"]=float(datum["Prod_Merc_Positions_Long_Other"])
                index["ProdMercPositionsShortAll"]=float(datum["Prod_Merc_Positions_Short_All"])
                index["ProdMercPositionsShortOld"]=float(datum["Prod_Merc_Positions_Short_Old"])
                index["ProdMercPositionsShortOther"]=float(datum["Prod_Merc_Positions_Short_Other"])
                index["SwapPositionsLongOther"]=float(datum["Swap_Positions_Long_Other"])

                objects.append(index)

            except Exception as e:
                # Do nothing, possible error in json decoding
                raise e

        return BaseDataCollection(objects[-1].EndTime, config.Symbol, objects)



mapped_attr ={

    "DISAGGREGATED.Disaggregated":
    [
    "Date",
    "Mmoneypositionslongall",
    "Mmoneypositionslongold",
    "Mmoneypositionslongother",
    "Mmoneypositionsshortall",
    "Mmoneypositionsshortold",
    "Mmoneypositionsshortother",
    "Mmoneypositionsspreadall",
    "Mmoneypositionsspreadold",
    "Mmoneypositionsspreadother",
    "Nonreptpositionslongall",
    "Nonreptpositionslongold",
    "Nonreptpositionslongother",
    "Nonreptpositionsshortall",
    "Nonreptpositionsshortold",
    "Nonreptpositionsshortother",
    "Openinterestall",
    "Openinterestold",
    "Openinterestother",
    "Otherreptpositionslongall",
    "Otherreptpositionslongold",

    "Otherreptpositionsshortall",
    "Otherreptpositionsshortold",
    "Otherreptpositionsshortother",
    "Otherreptpositionsspreadall",
    "Otherreptpositionsspreadold",
    "Otherreptpositionsspreadother",
    "Prodmercpositionslongall",
    "Prodmercpositionslongold",
    "Prodmercpositionslongother",
    "Prodmercpositionsshortall",
    "Prodmercpositionsshortold",
    "Prodmercpositionsshortother",
    "Swappositionslongother"],
      

    'WESTERN.Western':['Date',
    'Inventories',
    'Month',
    'Orders',
    'Production',
    'Shipments',
    'Unfilled',
    'Year',
    'Day'] ,

    "CASH.Cash":[
    'Code',
    'Year',
    'Month',
    'Week',
    'Date',
    "Cmeexpiry",
    "Basis",
    "Settledfin",
    "Settlephys",
    "Shortdesc",
   " Season",
   " Length",
   " Grade",
   " Size",
    "Season",
   " Pricepoint",
    "Dest",
   " Origin",
   " Finish",
   
   ],


   "SETTLED.Settled":[
    'Date',
    'Ranking',
    'Dayhighprice',
    'Daylowprice',
    'Settleprice',
    'Openingprice',
    'Prevdayvol',
    'Prevdayopeninterest',
    'Mmy',
    'Maturity',
    ],


}







#function to create dict from objects

def create_dict(obj):

    attr=mapped_attr[str(obj.Symbol)]

    dct={}
    dct["Symbol"]=str(obj.Symbol)
    dct["Value"]=float(obj.Value)   
    
    for at in attr:
        dct[at]=getattr(obj,at)

    return dct



# Your New Python File
from AlgorithmImports import *
import math
from collections import deque
from EnumFunc import *
from functools import wraps
import pandas as pd
import numpy as np
from QuantConnect.Data.Consolidators import CalendarInfo

# A skeleton class for storing Futures Data - Shared by all Models

class DataClass:

    def __init__(self, Algorithm, continuous_contract):
        
        self.algo = Algorithm # This is Our Instance of QCAlgorithm
        self.continuous_contract = continuous_contract
        self.Symbol = self.continuous_contract.Symbol 
        self.tradePriceUpdated = False

        # Contract Properties
        self.tickSize = self.continuous_contract.SymbolProperties.MinimumPriceVariation

        # Bids, Asks, Trade Prices for both Mapped & Continuous        
        self._bestBidContinuous = dotdict(dict.fromkeys(['time', 'price', 'size']))
        self._bestBidMapped = dotdict(dict.fromkeys(['time', 'price', 'size']))

        self._bestAskContinuous = dotdict(dict.fromkeys(['time','price', 'size']))
        self._bestAskMapped = dotdict(dict.fromkeys(['time','price', 'size']))

        self._tradeContinuous = dotdict(dict.fromkeys(['time','price', 'size']))
        self._tradeMapped = dotdict(dict.fromkeys(['time','price', 'size']))

        self._WAPMapped = None            
        self._yesterdayPercentChange = {}
        self.RollingYesterdayPercentChange = deque(maxlen=6*60*60) # 6 hours * 60 minutes * 60 seconds

        # Market Timings
        self._currentOpen = None
        self._currentClose = None
        self._nextOpen = None

        # Indicators
        self.atrPeriod = 2
        self._ContinuousATR = AverageTrueRange(self.atrPeriod, MovingAverageType.Simple) 
        self._MappedATR = AverageTrueRange(self.atrPeriod, MovingAverageType.Simple)

        self._ContinuousMA2 = SimpleMovingAverage(2)
        self._MappedMA2 = SimpleMovingAverage(2)
        self._MappedYesterday = SimpleMovingAverage(1)
        self._ContinuousYesterday = SimpleMovingAverage(1)

        # History DFs - Using so only call History when not already called before for other Indicators
        self.mappedTradeDailyHistory = None
        self.mappedTradeHistory = None        
        self.continuousDailyHistory = None
        self.continuousHistory = None
        
        # Schedulers

        # Update Yesterday Price 10 minutes before Market Opens - Can even use 'LBS' in TimeRules.AfterMarketOpen
        self.algo.Schedule.On(self.algo.DateRules.EveryDay(self.Symbol), self.algo.TimeRules.AfterMarketOpen(self.Symbol, -10), self.updateDailyIndicators)
        
        # Reset BBO dicts 10 minutes after market close
        self.algo.Schedule.On(self.algo.DateRules.EveryDay(self.Symbol), self.algo.TimeRules.BeforeMarketClose(self.Symbol, -10), self.resetTickDict)

        # Capture Nasdaq %age Change before Lumber Opens  
        # self.algo.Schedule.On(self.algo.DateRules.EveryDay(self.Symbol), self.algo.TimeRules.At(9,59,51),self.updateRollingSeries)
        # Capture %age Change for Nasdaq & Lumber during Lumber Market Hours
        # self.algo.Schedule.On(self.algo.DateRules.EveryDay(self.Symbol), self.algo.TimeRules.Every(timedelta(seconds=1)),self.updateRollingSeries)

        # Calls the property (self.tradeContinuous/tradeMapped) everytime there is a trade so as to update it. 
        self.tradeEvent = TickConsolidator(1)
        self.tradeEvent.DataConsolidated += self.updateTradePrice
        # Not sure if using self.Symbol will only show Trades for front Month or for all Mapped symbols
        self.algo.SubscriptionManager.AddConsolidator(self.Symbol, self.tradeEvent)

    # Change to self.tradeMapped once we find a better way to calculate it rather than using History
    def updateTradePrice(self, sender: object, Tbar: TradeBar) -> None:
        if self.algo.Time < self.algo.signalStartTime or self.algo.Time > self.algo.signalEndTime: return                
        
        self.tradePriceUpdated = True
        self._yesterdayPercentChange = {}
        # self.tradeMapped
        self.tradeContinuous

    @property
    def yesterdayPercentChange(self):
        if self.algo.Time < self.algo.signalStartTime or self.algo.Time > self.algo.signalEndTime: return    

        # Change self._tradeContinuous with self._tradeMapped once we have more efficient way to get self._tradeMapped rather than using History
        # Can use continuous incase using DataNormalizationMode.Raw
        if None not in (self._tradeContinuous.price,self._MappedYesterday.Current.Value) and self.tradePriceUpdated:
            self._yesterdayPercentChange[self._tradeContinuous.time] = round(((self._tradeContinuous.price - self._MappedYesterday.Current.Value)/self._MappedYesterday.Current.Value)*100,2)                   
            self.tradePriceUpdated = False # Ensures that unless new Trade value is updated in UpdateTradePrice func, no need to recalculate
        return self._yesterdayPercentChange        
    
    # To be removed - but first see all other varibles, their uses etc. Compare output with the One in AlphaModel etc. 
    # Moved to Alpha Model - call it updateModelData or percentChangeSeconds
    def updateRollingSeries(self):  

        # self.yesterdayPercentChange only updates during Lumber hours but the above statement is used for 'else' below:
        if self.yesterdayPercentChange:
            
            # Capctures only when data available
            self.RollingYesterdayPercentChange.appendleft(self._yesterdayPercentChange)                                 
            
            # Captures every Second
            self.algo.percentChangeDF.loc[self.algo.Time,self.Symbol] = list(self._yesterdayPercentChange.values())[0]            
            self.algo.Debug(f"{self.algo.Time}:{self.algo.percentChangeDF.tail(1)}")
            
            # Get Latest RollingYesterdayPercentChange fo respective Symbols - only updates when yesterdayPercentChange exists for a symbol
            self.algo.Debug(f"##{self.algo.Time}:{self.Symbol}:{self.RollingYesterdayPercentChange[0]}")
            self.algo.Debug(f"***{self.algo.Time}:{self.Symbol}:{list(self.RollingYesterdayPercentChange[0].values())[0]}")

            # Max, Min and rolling Max for RollingYesterdayPercentChange
            # self.algo.Debug(f"MAX{self.algo.Time}:{self.Symbol}:{max(max(d.values()) for d in self.RollingYesterdayPercentChange)}")           
            # Find the maximum value over the last n data points (in this case, n=3)
            # max_n_value = max(max(d.values()) for d in list(self.RollingYesterdayPercentChange)[:3])
            # self.algo.Debug(f"MIN{self.algo.Time}:{self.Symbol}:{min(min(d.values()) for d in self.RollingYesterdayPercentChange)}")

            # To Do Adjustments to percentChangeDF    
            # self.algo.percentChangeDF= self.algo.percentChangeDF.fillna(method='ffill')
            # corr = self.algo.percentChangeDF['/NQ'].corr(self.algo.percentChangeDF['/LBS'])
            # self.algo.Debug(f"{self.algo.Time}:Correlation{corr}")


        




    # Gets Updated from main
    def Update(self, data):

        if data.SymbolChangedEvents.ContainsKey(self.Symbol):
            # Reset ONLY Mapped Indicators (ones based on Mapped contracts) - This will load History when contract switches
            self._MappedATR.Reset() 
            self._MappedMA2.Reset() 
            self._MappedYesterday.Reset() 
            
            # NOT letting register New Symbol - asking to subscribe to it first.
            # symbolChangedEvent = data.SymbolChangedEvents[self.Symbol]
            # self.algo.SubscriptionManager.AddConsolidator(symbolChangedEvent.NewSymbol, self.tradeEvent)
            # self.algo.SubscriptionManager.RemoveConsolidator(symbolChangedEvent.OldSymbol, self.tradeEvent)
        
        # if self.algo.Time <= self.algo.signalStartTime or self.algo.Time >= self.algo.signalEndTime: return


    @property
    def ATR(self):
        # self.algo.Debug(f"self._MappedATR.IsReady:{self._MappedATR.IsReady} at {self.algo.Time}")
        # self.algo.Debug(f"# of samples{self._MappedATR.Samples}")
        return self._MappedATR.Current.Value


    # Resetting Best Bid/Ask at MarketClose
    def resetTickDict(self):

        # 10 minutes after close
        # NG - 17:10 on 27th (Start date on 26th) 
        # LBS - 16:15 on 27th (Start date on 26th)
        # self.algo.Debug(f"symbol:{self.Symbol},{self.algo.Time}")

        # Emoty the deque
        self.RollingYesterdayPercentChange = deque(maxlen=6*60*60) # 6 hours * 60 minutes * 60 seconds
        
        self._bestAskContinuous = self._bestAskContinuous.fromkeys(self._bestAskContinuous, None)
        self._bestBidContinuous = self._bestBidContinuous.fromkeys(self._bestBidContinuous, None)

        self._bestAskMapped = self._bestAskMapped.fromkeys(self._bestAskMapped, None)
        self._bestBidMapped = self._bestBidMapped.fromkeys(self._bestBidMapped, None)

        self._tradeContinuous = self._tradeContinuous.fromkeys(self._tradeContinuous, None)
        self._tradeMapped = self._tradeMapped.fromkeys(self._tradeMapped, None)

        self._WAPMapped = None
        self._yesterdayPercentChange = {}

        self._currentOpen = None
        self._currentClose = None
        self._nextOpen = None
        

    def getMappedTradeHistory(self,days):
        history = self.algo.History[TradeBar](self.Mapped, days, Resolution.Daily)
        # https://www.quantconnect.com/docs/v2/writing-algorithms/historical-data/rolling-window#09-Cast-to-Other-Types
        return self.algo.PandasConverter.GetDataFrame[TradeBar](list(history)) 


    def getContinuousHistory(self,days):
        return self.algo.History(tickers=[self.Symbol], 
        start=self.startBDate(self.algo.Time,days).date(), # Using self.startBDate since if we simply use startdate minus timedelta(self.atrperiod), it doesn't keep holidays in count
        end=self.algo.Time,
        resolution=Resolution.Daily, 
        fillForward=True, 
        extendedMarket=True, 
        dataMappingMode=DataMappingMode.FirstDayMonth,
        dataNormalizationMode = self.algo.DataNormalizationMode, # Got this from Main
        contractDepthOffset=0)


    def updateDailyIndicators(self):        
        
        # NG - 9:20 on 27th (Start date on 26th)
        # LBS - 9:50 on 27th (Start date on 26th)
        # self.algo.Debug(f"symbol:{self.Symbol},{self.algo.Time}")

        # Resetting Every Day
        self.mappedTradeDailyHistory = None
        self.mappedTradeHistory = None        
        self.continuousDailyHistory = None
        self.continuousHistory = None
        
        self.updateDailyMappedIndicators(indicator = self._MappedATR, period = self.atrPeriod+1, updateType =  'TradeBar')        
        self.updateDailyMappedIndicators(indicator = self._MappedYesterday, period = 1, updateType = 'DailyClose')
        self.updateDailyMappedIndicators(indicator = self._MappedMA2, period = 2, updateType = 'DailyClose')
        
        self.updateDailyContinuousIndicators(indicator = self._ContinuousATR, period = self.atrPeriod+1, updateType =  'TradeBar')
        self.updateDailyContinuousIndicators(indicator = self._ContinuousMA2, period = 2, updateType = 'DailyClose')       
        self.updateDailyContinuousIndicators(indicator = self._ContinuousYesterday, period = 1, updateType = 'DailyClose') 


    def updateDailyMappedIndicators(self, indicator, period, updateType): 
        
        # MAPPED INDICATORS 
        if self.Mapped is not None:
            # ATR Update - # All Manual Indicators Updated Manually Here
            if not indicator.IsReady: # Runs (1) At start (2) When contract Rolls
                if self.mappedTradeHistory is None or len(self.mappedTradeHistory) < period:
                    self.mappedTradeHistory = self.getMappedTradeHistory(days = period)                
                
                mappedTradeHistory_ = self.mappedTradeHistory[-period:]
                
                for bar in mappedTradeHistory_.itertuples():
                    if updateType == 'TradeBar':
                        tradebar = TradeBar(bar.Index[1], self.Mapped, float(bar.open), float(bar.high), float(bar.low), float(bar.close), float(bar.volume))
                        # self.algo.Debug(f"Bar1:{tradebar} @ {bar.Index[1]}")
                        indicator.Update(tradebar)
                        # self.algo.Debug(f"1stManual:{tradebar},{bar.Index[1]}")
                    elif updateType == 'DailyClose':
                        indicator.Update(bar.Index[1], bar.close)

            else: # Indicator is ready so just updating it for the day.   
                if self.mappedTradeDailyHistory is None or self.mappedTradeDailyHistory.empty:
                    self.mappedTradeDailyHistory = self.getMappedTradeHistory(days = 1) 
                               
                for bar in self.mappedTradeDailyHistory.itertuples():   
                    if updateType == 'TradeBar':                 
                        tradebar = TradeBar(bar.Index[1], self.Mapped, float(bar.open), float(bar.high), float(bar.low), float(bar.close), float(bar.volume))
                        indicator.Update(tradebar)
                        # self.algo.Debug(f"2ndManual:{tradebar},{bar.Index[1]}")
                    elif updateType == 'DailyClose':
                        indicator.Update(bar.Index[1], bar.close)
                        

    def updateDailyContinuousIndicators(self, indicator, period, updateType): 

        # CONTINUOUS INDICATORS
        if self.Symbol is not None:

            # ATR Update - # All Manual Indicators Updated Manually Here
            if not indicator.IsReady: # Runs (1) At start OnLY     
                if self.continuousHistory is None or len(self.continuousHistory) < period:
                    self.continuousHistory = self.getContinuousHistory(days=period)
                
                continuousHistory_ = self.continuousHistory[-period:]

                for bar in continuousHistory_.itertuples(): 
                    if updateType == 'TradeBar':
                        tradebar = TradeBar(bar.Index[2], bar.Index[1], float(bar.open), float(bar.high), float(bar.low), float(bar.close), float(bar.volume))
                        indicator.Update(tradebar)
                    elif updateType == 'DailyClose':
                        indicator.Update(bar.Index[2], bar.close)
                        
                    # self.algo.Debug(f"1stAuto:{tradebar},{bar.Index[2]}")


            else: # Indicator is ready so just updating it for the day.     
                if self.continuousDailyHistory is None or self.continuousDailyHistory.empty:
                    self.continuousDailyHistory = self.getContinuousHistory(days=1)                            
                
                for bar in self.continuousDailyHistory.itertuples():
                    if updateType == 'TradeBar':
                        # self.algo.Debug(f"2ndAuto:{tradebar},{bar.Index[2]}")
                        tradebar = TradeBar(bar.Index[2], bar.Index[1], float(bar.open), float(bar.high), float(bar.low), float(bar.close), float(bar.volume))
                        indicator.Update(tradebar)
                    elif updateType == 'DailyClose':
                        indicator.Update(bar.Index[2], bar.close)


    @property
    def bestBidMapped(self):

        # Only updating if Bid price and Size changed so as to keep the original Time of last update
        if int(getattr(self.algo.Securities[self.Mapped], 'BidSize')) != 0 and not self.alreadyUpdated('BidPrice', 'BidSize', self._bestBidMapped):
            for key,prop in zip(list(self._bestBidMapped.keys()),['LocalTime','BidPrice', 'BidSize']):
                setattr(self._bestBidMapped,str(key),getattr(self.algo.Securities[self.Mapped], prop))

        return self._bestBidMapped


    @property
    def bestAskMapped(self):        
        # Only updating if Ask price and Size changed so as to keep the original Time of last update
        if int(getattr(self.algo.Securities[self.Mapped], 'AskSize')) != 0 and not self.alreadyUpdated('AskPrice', 'AskSize', self._bestAskMapped):
            for key,prop in zip(list(self._bestAskMapped.keys()),['LocalTime','AskPrice', 'AskSize']):
                setattr(self._bestAskMapped,str(key),getattr(self.algo.Securities[self.Mapped], prop))
        return self._bestAskMapped

    
    @property
    def bestBidContinuous(self):
        # Only updating if Bid price and Size changed so as to keep the original Time of last update
        if int(getattr(self.algo.Securities[self.Symbol], 'BidSize')) != 0 and not self.alreadyUpdated('BidPrice', 'BidSize', self._bestBidContinuous):
            for key,prop in zip(list(self._bestBidContinuous.keys()),['LocalTime','BidPrice', 'BidSize']):
                if key == 'price':
                    setattr(self._bestBidContinuous,str(key),round(getattr(self.algo.Securities[self.Symbol], prop),1))
                else:
                    setattr(self._bestBidContinuous,str(key),getattr(self.algo.Securities[self.Symbol], prop))
        return self._bestBidContinuous



    @property
    def bestAskContinuous(self):       
        # Only updating if Ask price and Size changed so as to keep the original Time of last update
        if int(getattr(self.algo.Securities[self.Symbol], 'AskSize')) != 0 and not self.alreadyUpdated('AskPrice', 'AskSize', self._bestAskContinuous):
            for key,prop in zip(list(self._bestAskContinuous.keys()),['LocalTime','AskPrice', 'AskSize']):
                if key == 'price':
                    setattr(self._bestAskContinuous,str(key),round(getattr(self.algo.Securities[self.Symbol], prop),1))
                else:
                    setattr(self._bestAskContinuous,str(key),getattr(self.algo.Securities[self.Symbol], prop))
        return self._bestAskContinuous

   
    @property
    def tradeContinuous(self):        
        if self.algo.CurrentSlice.Ticks.ContainsKey(self.Symbol) and self.algo.CurrentSlice.Ticks[self.Symbol] is not None:
            ticks = self.algo.CurrentSlice.Ticks[self.Symbol]
            for tick in ticks:
                tick_type = getTickType(tick.TickType)
                if tick_type == 'Trade' and int(getattr(tick, 'Quantity')) != 0 and int(getattr(tick, 'Price')) is not None:
                    for key,prop in zip(list(self._tradeContinuous.keys()),['Time','Price','Quantity']):
                        if key == 'price':
                            setattr(self._tradeContinuous,str(key),round(getattr(tick, prop),1))
                        else:
                            setattr(self._tradeContinuous,str(key),getattr(tick, prop))
                else:
                    pass
        return self._tradeContinuous

    @property
    def tradeMapped(self):

        # Keep these seconds equal to scheduler ??
        # history = self.algo.History[Tick](self.Mapped, timedelta(seconds=60), Resolution.Tick)

        history = self.algo.History[Tick](self.Mapped, timedelta(microseconds=1), Resolution.Tick)
        history = self.algo.PandasConverter.GetDataFrame[Tick](list(history)) 
        for bar in history.itertuples():
            if hasattr(bar,'quantity'):
                if getattr(bar,'quantity') >= 1:
                    self._tradeMapped['time'] = bar.Index[1].to_pydatetime().strftime('%Y-%m-%d %H:%M:%S.%f')
                    self._tradeMapped['price'] = bar.lastprice
                    self._tradeMapped['size'] = bar.quantity

        return self._tradeMapped


    @property
    def WAPMapped(self):
        if None not in (self.bestAskMapped.size,self.bestBidMapped.size):
            self._WAPMapped = round(((self.bestBidMapped.price * self.bestAskMapped.size) + (self.bestAskMapped.price * self.bestBidMapped.size))/(self.bestBidMapped.size + self.bestAskMapped.size),1)
            
        return self._WAPMapped


    @property
    def currentOpen(self):
        hours = self.algo.Securities[self.Mapped].Exchange.Hours
        # Added extra hour to Make it work with NewYork Time/ Algorithm Time
        self._currentOpen = hours.GetNextMarketOpen(self.algo.Time - timedelta(hours=24), False) + timedelta(hours=1) 
        return self._currentOpen  # 
    
    @property
    def currentClose(self):
        hours = self.algo.Securities[self.Mapped].Exchange.Hours
        # Added extra hour to Make it work with NewYork Time/ Algorithm Time
        self._currentClose = hours.GetNextMarketClose(self.algo.Time - timedelta(hours=24), False) + timedelta(hours=1) 
        return self._currentClose  # 

    @property
    def nextOpen(self):
        hours = self.algo.Securities[self.Mapped].Exchange.Hours
        # Added extra hour to Make it work with NewYork Time/ Algorithm Time
        self._nextOpen = hours.GetNextMarketOpen(self.algo.Time, False) + timedelta(hours=1) 
        return self._nextOpen  # 



    # RealOnly RealTime 
    @property
    def Mapped(self):
        return getattr(self.continuous_contract, 'Mapped')

    @property
    def Canonical(self):
        return getattr(self.Symbol, 'Canonical')

    # @property
    # def timezone(self):
    #     return self.algo.MarketHoursDatabase.GetDataTimeZone(Market.CME, self.Symbol, SecurityType.Future)


    # Genric Functions - Combine both together
    def businessDay(self,dt):
        return 1 if getattr(self.algo.TradingCalendar.GetTradingDay(dt),'BusinessDay') else 0
    
    def startBDate(self,end_dt, lag):  
        count = 0      
        start_dt = end_dt 
        while count!= lag:
            start_dt -= timedelta(days=1)
            count += self.businessDay(start_dt)
        return start_dt
    
    
    # This is not entirely correct as someone may have canceled and others may have added a bid with net being affect 0 
    def alreadyUpdated(self, price, size, dictionary):
        return getattr(self.algo.Securities[self.Mapped], price) == dictionary.price and getattr(self.algo.Securities[self.Mapped], size) == dictionary.size
        

class dotdict(dict):
    """dot.notation access to dictionary attributes"""
    __getattr__ = dict.get
    __setattr__ = dict.__setitem__
    __delattr__ = dict.__delitem__

from AlgorithmImports import *
# https://github.com/QuantConnect/Lean/blob/master/Common/Orders/OrderTypes.cs#L87

def get_order_status_name(index):
   return { 
       0: 'New',
       1: 'Submitted',
       2: 'PartiallyFilled',
       3: 'Filled',
       4: 'None',
       5: 'Canceled',
       6: 'None',
       7: 'Invalid',
       8: 'CancelPending',
       9: 'UpdateSubmitted '
    }[index]


def get_order_direction_name(index):
    return {
        0: 'Buy',
        1: 'Sell',
        2: 'Hold',
    }[index]


def get_order_type_name(index):
    return {
        0: 'Market',
        1: 'Limit',
        2: 'StopMarket',
        3: 'StopLimit',
        4: 'MarketOnOpen',
        5: 'MarketOnClose',
        6: 'OptionExercise',
        7: 'LimitIfTouched'
    }[index]

# This dictionary is Used to detrmine the Upside of Lumber Prices versus Yesterday's Settle:
# From there we assume, TP, 
def get_upside(index):
    return {
        '1.5%':10,
        '2%':12,
        '3%':15
    }[index]


# https://www.quantconnect.com/docs/v2/writing-algorithms/securities/key-concepts
def getSecurityType(index):
       return {
        0: 'Base',
        1: 'Equity',
        2: 'Option',
        3: 'Commodity',
        4: 'Forex',
        5: 'Future',
        6: 'Cfd',
        7: 'Crypto',
        8: 'FutureOption',
        9: 'Index',
        10: 'IndexOption',
        'CryptoFuture': 'CryptoFuture'
        
    }[index]

def getDataType(index):
       return {
        0: 'Base',
        1: 'TradeBar',
        2: 'Tick',
        3: 'Auxiliary', # Data associated with an instrument
        4: 'QuoteBar',
        5: 'OptionChain',
        6: 'FuturesChain'
    }[index]

def getTickType(index):
       return {
        0: 'Trade',
        1: 'Quote',
        2: 'OpenInterest' # Open Interest type tick object (for options, futures)
    }[index]

#region imports
from AlgorithmImports import *
#endregion

# NEED HELP
# 1. Done: Get Yesterday's Close Price for Lumber Contracts - 2 ways to acheive. 
        # 1a. Use history fuction everyday - Works Fine
        # 2a. Use Identity Indicator - Its partially correct when using Resolution.Daily but incorrect On days when the contract rolls.
        # i.e. it still shows yesterday's close for previous contract on RollOverDays. Also would require a day or 2 of warmuP
        #   Secondly, if I use Resolution.Tick in Lumber Contract definition, it shows 2 days ago prices when called before market Open


# 3. Find trading days when both Nasdaq and Lumber were open (keeping in mind yesterday's data) and only trade when both are available atleast for backtesting
# https://www.quantconnect.com/docs/v2/writing-algorithms/securities/asset-classes/futures/market-hours/cme/mnq
# https://www.quantconnect.com/docs/v2/writing-algorithms/securities/asset-classes/futures/market-hours/cme/lbs

# 4. Nasdaq data not available on first day since it gets added at 2300 hours while Lumber gets added at 00 hours.

# 5. Didn't check if Nasdaq prices are fine or if Nasdaq yesterday contract prices match the rolled over contract

# 6. Whats the difference between getting Bids & Asks from ticks like below - Is the first one Time&Sales (for quotes) while second one gives Best Bids/Asks?
                # ticks = self.algo.CurrentSlice.Ticks[self.Symbol]
                # for tick in ticks:
                #         tick.AskPrice 

        # versus getting bids/asks from self.Securities[security].AskPrice

# 7.         # Questions on quoteEvent (TickQuoteBarConsolidator): 
        # 1. Does this tell you total number of best bids/asks at any moment in time or are these just seperate orders and their corresponding sizes? 
        # 2. Quotes are for mapped rolled contracts?
        # 3. Also these are not all quotes as placed but only Top Bids/Asks. So for example, they are only generated if someone has topped a previous bid/offer?






# Some other references:

# 1. Tick Data related
        # https://www.quantconnect.com/docs/v2/writing-algorithms/securities/asset-classes/futures/handling-data#07-Ticks
        # LastPrice - Alias for "Value" - the last sale for this asset. Same as Price 
        # IsFillForward - True if this is a fill forward piece of data 
        # 'Time','EndTime' - for Trade Tick is same as self.Time but for time use this property only
        # 'Symbol' - Not available but has other sub properties 
        # ,'SaleCondition','Suspicious' - Not relevant
        
        # tickTradeProps = ['Price','Quantity']
        # tickQuoteProps = ['BidPrice','BidSize','AskPrice','AskSize']
        # tickOIProps = ['Value']  # Not Getting Data for OpenInterest

# Other Notes to self:
        # 1. Since Resolution is for Ticks, we won't be getting Trade & Quote Bars
        # 2. 'LocalTime': Local time for this market
        # 3. Properties of self.Securities - https://www.quantconnect.com/docs/v2/writing-algorithms/securities/properties#02-Security-Properties
        
        # 4. Nasdaq - closes at 4 pm & opens at 8:30 Chicago, Also trades at 11 pm till not sure when?
                # OnSecuritiesChanged: Date:2022-12-19 23:00:00, security:MNQ Y6URRFPZ86BL

        # 5. # Links to documentation pertaining 

                # Time Modeling
                # https://www.quantconnect.com/docs/v2/writing-algorithms/key-concepts/time-modeling/timeslices#03-Properties

                # Futures - Handling Data
                # https://www.quantconnect.com/docs/v2/writing-algorithms/securities/asset-classes/futures/handling-data


                # To get the current Slice object, define an OnData method or use the CurrentSlice property of your algorithm (outside of the OnData method).
                # If the data object doesn't contain any market data but it contains auxiliary data, the slice.ContainsKey(symbol) method can return true while slice[symbol] returns None.


# Indicator Help

# In QuantConnect/Lean, we have shortcut methods for indicators, they belong to the QCAlgorithm class (use self) and name are upper-cased. These helper methods create a new instance of a indicator object and hook it up to a data consolidator so that the indicator is automatically updated by the engine.
# Since these methods create a new instance, we just should only to call it once (normally in Initialize) and assign it to a class variable to be accessed throughout the algorithm.

# 1. AverageTrueRange:
# https://www.quantconnect.com/forum/discussion/7972/using-atr-and-other-039-complex-039-indicators-with-history/p1
# https://www.quantconnect.com/forum/discussion/11457/warmup-atr-with-history
# https://www.quantconnect.com/docs/v2/writing-algorithms/indicators/supported-indicators/average-true-range


# 2. Aplying Indicators to the continuous contract prices:
        # we don't need to reset the indicator when the contract rolls over.
        # The indicator will just continue to reflect the prices of the continuous contract.

# 3. Aplying Indicators to Specific Mapped contract prices:
        #  reset the indicator if we were applying the indicator to a specific contract
        #  and then we switch to a new contract after the rollover.

# 4. Common Mistakes - Creating Automatic Indicators in a Dynamic Universe: - You can't currently remove the consolidator that LEAN creates to update automatic indicators. 
        # If you add consolidators to a dynamic universe, the consolidators build up over time and slow down your algorithm. 
        # To avoid issues, if you algorithm has a dynamic universe, use manual indicators.
        # However, I think since expired contracts expire (say 15 days after we roll over), the consolidators won't have data to fill so won't be as slow?

# https://www.quantconnect.com/docs/v2/writing-algorithms/indicators/manual-indicators#05-Automatic-Updates
# 5. Automatic Updates for Manual Indicators: To configure automatic updates, create a consolidator and then call the RegisterIndicator method. 
        # If your algorithm has a dynamic universe, save a reference to the consolidator so you can remove it when the universe removes the security. 
        # If you register an indicator for automatic updates, don't call the indicator's Update method or else the indicator will receive double updates.

# 6. Looks like if you need an Indicator before market open, then may have to use manual indicators??
        # Since "Once your algorithm reaches the EndTime of a data point, LEAN sends the data to your OnData method. 
                # For bar data, this is the beginning of the next period. "
        # How about if we use consolidated data in Automatic Indicators - consolidated from much lower time frame
        # Not sure but it may also be that using the above solution, the indicator keeps getting updated through the day

        # The consolidators can update your indicators at each time step or with aggregated bars. By default, LEAN updates data point indicators with the close price of the consolidated bars, but you can change it to a custom data field.



# Insights
# 1. Magnitude - Get from Regression Analysis
# 2. Confidence as below (based on NAasdaq absolute yesterdayPercentChange)
#   0 - 1% = 15%
#   1 - 2% = 30%
#   2 - 3% = 45%
#   3 - 4% = 60%
#   4 - 5% = 75%
#   >5%    = 90%
# region imports
from AlgorithmImports import *
from AlphaModel import *
from DataClass import *
import math 
import pandas as pd
from System.Drawing import Color


class NasdaqStrategy(QCAlgorithm):

    def Initialize(self):
        self.SetBrokerageModel(BrokerageName.InteractiveBrokersBrokerage, AccountType.Margin)
        self.DefaultOrderProperties = InteractiveBrokersOrderProperties()
        # Order is valid until filled or the market closes
        # self.DefaultOrderProperties.TimeInForce = TimeInForce.Day
        # self.DefaultOrderProperties.OutsideRegularTradingHours = True
        
        # Set a Limit Order to be good until Lumber Close
        self.order_properties = OrderProperties()
        # self.SetStartDate(2022,12,1)        
        self.SetStartDate(2022,12,29)
        # self.SetEndDate(2023,1,5)
        self.SetEndDate(2022,12,29)
        self.SetCash(100000)
        
        self.DataNormalizationMode = DataNormalizationMode.Raw

        # TradeBuilder tracks the trades of your algorithm and calculates some statistics.
        # https://www.quantconnect.com/docs/v2/writing-algorithms/trading-and-orders/trade-statistics
        tradeBuilder = TradeBuilder(FillGroupingMethod.FillToFill,FillMatchingMethod.FIFO)    
        self.SetTradeBuilder(tradeBuilder)

        self.Data = {}
        FutureSymbols = {'Lumber':Futures.Forestry.RandomLengthLumber,'Nasdaq':Futures.Indices.NASDAQ100EMini}
        # FutureSymbols = {'Lumber':Futures.Forestry.RandomLengthLumber}
        # FutureSymbols = {'Nasdaq':Futures.Indices.NASDAQ100EMini}
        
        for key, value in FutureSymbols.items():
            
            dataMappingMode_ = DataMappingMode.FirstDayMonth if key == 'Lumber' \
            else DataMappingMode.OpenInterest if key == 'Nasdaq' else DataMappingMode.LastTradingDay

            # Use BackwardsPanamaCanal or BackwardsRatio or Raw for DataNormalizationMode when "Trade" PROPERTY is able to map to Mapped contract
            future = self.AddFuture(value, Resolution.Tick,dataMappingMode = dataMappingMode_, contractDepthOffset=0, 
            dataNormalizationMode = self.DataNormalizationMode, extendedMarketHours=True, fillDataForward = True)
            self.Data[key] = DataClass(self, future) # Initiating DataClass for each Future & Passing our instance of QCAlgorithm Class
        
        # Set alpha model - This also gives you access to the AlphaModel Instance
        self.alpha = NasdaqAlpha(self.Data)  # Also Pass the QCAlgorithmn Instance
        self.SetAlpha(self.alpha)

        # If I include Nasdaq, this should be on otherwise I get "Object reference not set to an instance of an object."
        # self.SetWarmUp(timedelta(days=1), Resolution.Tick)
        # self.SetWarmUp(timedelta(days=1), Resolution.Daily)

        # Printing Indicator's data 
        self.Schedule.On(self.DateRules.EveryDay(self.Data['Lumber'].Symbol), self.TimeRules.AfterMarketOpen(self.Data['Lumber'].Symbol, -1), self.beforeLumberOpen)        

        # Algorithm starts calculating singal values between these 2 times everyday
        self.signalStartTimeDict = {'hour':9,'minute':59,'second':55,'microSecond':0}

        # But due to this we won't be able to view eod close data
        self.signalEndTimeDict = {'hour':16,'minute':5,'second':0,'microSecond':0}

        self.signalStartTime = self.Time.replace(hour=self.signalStartTimeDict['hour'], minute=self.signalStartTimeDict['minute'], second=self.signalStartTimeDict['second'], microsecond=self.signalStartTimeDict['microSecond'])
        self.signalEndTime   = self.Time.replace(hour=self.signalEndTimeDict['hour'], minute=self.signalEndTimeDict['minute'], second=self.signalEndTimeDict['second'], microsecond=self.signalEndTimeDict['microSecond'])

        self.SetTimeZone(TimeZones.NewYork)  # This is a daylight savings time zone.
        # If TimeZone is Chicago - Algo Time and Data End Time are same at 1800 hours
       
       # Remove this once verified
        self.percentChangeDF = pd.DataFrame()

        # Chart
        chart = Chart("NQ vs LBS")
        # How to Add both Index & Color to Series
        chart.AddSeries(Series(name = "Nasdaq", type = SeriesType.Line,  unit = '%', color = Color.Green))
        chart.AddSeries(Series(name = "Lumber", type = SeriesType.Line,  unit = '%', color = Color.Red))
        self.AddChart(chart)

        # Trading Related Global Variables
        self.nasdaqCutoff = 1.66
        self.maxContractLimit = 5

        # This should be calculated based on regression coefficient
        self.lumberBetaToNasdaq = 2

    def beforeLumberOpen(self):

        self.signalStartTime = self.Time.replace(hour=self.signalStartTimeDict['hour'], minute=self.signalStartTimeDict['minute'], second=self.signalStartTimeDict['second'], microsecond=self.signalStartTimeDict['microSecond'])
        self.signalEndTime   = self.Time.replace(hour=self.signalEndTimeDict['hour'], minute=self.signalEndTimeDict['minute'], second=self.signalEndTimeDict['second'], microsecond=self.signalEndTimeDict['microSecond'])

        # if self.IsWarmingUp: return
        
        # Works - Get Indicator's data - For mapped Indicators, keeping in mind Rolled Over Contracts
        for symbol in self.Data.keys():

            # if self.Data[symbol].yesterdayPercentChange is not None:
            #     self.Debug(f"yesterdayPercentChange:{symbol}:{self.Time}:{self.Data[symbol].yesterdayPercentChange}")

            pass
            # self.Debug(f"Yester Time:{self.Time}, {self.Data[symbol].Mapped}.yesterday:{self.Data[symbol].yesterday}")
            # self.Debug(f"{symbol}: Mapped ATR property:{self.Data[symbol].ATR}, {self.Time}")               
            # self.Debug(f"{symbol}: Continuous ATR property:{round(self.Data[symbol]._ContinuousATR.Current.Value,2)}, {self.Time}")    
            # self.Debug(f"{symbol}: Mapped MA2 property:{self.Data[symbol]._MappedMA2.Current.Value}, {self.Time}")    
            # self.Debug(f"{symbol}: Continuous MA2 property:{round(self.Data[symbol]._ContinuousMA2.Current.Value,2)}, {self.Time}") 
            # self.Debug(f"{symbol}: Mapped Yesterday:{self.Data[symbol]._MappedYesterday.Current.Value}, {self.Time}") 
            # self.Debug(f"{symbol}: Timezone:{self.Data[symbol].timezone}") 
            # self.Debug(f"{symbol}: Continuous Yesterday:{self.Data[symbol]._ContinuousYesterday.Current.Value}, {self.Time}") 

        # Works
        # for security in self.ActiveSecurities.Values:
        #     self.Debug(f"self.Time:{self.Time} ActiveSecurity:{security}")


    def OnSecuritiesChanged(self, changes: SecurityChanges) -> None:
        
        # NG - at 00:00:00 on 27th when StartDate is 26th
        # LBS - at 01:00:00 on 27th when StartDate is 26th

        # Only runs at the start of program not when Contract rolls 
        for security in changes.AddedSecurities:
            if len(changes.AddedSecurities) == 0: return
            self.Debug(f"In Main: OnSecuritiesChanged: Date:{self.Time}, security:{changes.AddedSecurities[0].Mapped}")


    def OnData(self, data):    
        
        # https://www.quantconnect.com/docs/v2/writing-algorithms/historical-data/warm-up-periods#03-Warm-Up-Vs-Reality
        # if self.IsWarmingUp: return
        
        # Below code important to compare Ticks with whats reported from DataClass
        tickTradeProps = ['LastPrice','Quantity']
        tickQuoteProps = ['BidPrice','BidSize','AskPrice','AskSize']
        # tickOIProps = ['Value']  # Not Getting Data for OpenInterest
        
        for security in data.Keys:           
            
            # if self.Time < self.signalStartTime or self.Time > self.signalEndTime: return # temporary
            
            if data.Ticks.ContainsKey(security) and data.Ticks[security] is not None:
                ticks = data.Ticks[security]
                for tick in ticks:
                    tick_type = getTickType(tick.TickType)
                    if tick_type == 'Trade' and int(getattr(tick, 'Quantity')) != 0:
                        # For Trade Data
                        dic = {k:getattr(tick, k) for k in tickTradeProps if getattr(tick, k) is not None}
                        # self.Debug(f"TradeTick:{self.Time} {dic}, security:{security}")          
                    elif tick_type == 'Quote':
                        # For Best Bid & Ask
                        # dic2 = {k:getattr(self.Securities[security], k) for k in tickQuoteProps} 
                        dic2 = {k:round(getattr(self.Securities[security], k),1) if k in ['BidPrice','AskPrice'] else getattr(self.Securities[security], k) for k in tickQuoteProps} 
                        # self.Debug(f"QuoteTick:{self.Time}, security:{security},  {dic2}")

        # prev_dt = None                                                    
    # for symbol in data.Keys: 
        for symbol in self.Data.keys():            
            if data.ContainsKey(self.Data[symbol].Symbol):
                self.Data[symbol].Update(data)
            
            if self.Time < self.signalStartTime or self.Time > self.signalEndTime: return # temporary
            

            # self.Debug(f"{self.Time}:{self.percentChangeDF.tail(1)}")



            # self.Debug(f"++BestBidMapped:{symbol}:{self.Time}:{self.Data[symbol].bestBidMapped}")
            # self.Debug(f"^^BestAskMapped:{symbol}:{self.Time}:{self.Data[symbol].bestAskMapped}")   
            # self.Debug(f"++BestBidContinuous:{symbol}:{self.Time}:{self.Data[symbol].bestBidContinuous}")
            # self.Debug(f"^^BestAskContinuous:{symbol}:{self.Time}:{self.Data[symbol].bestAskContinuous}")   
            
            # if self.Data[symbol].tradeMapped != prev_dt:
            # self.Debug(f"**tradeMapped:{symbol}:{self.Data[symbol].tradeMapped}")
            # prev_dt = self.Data[symbol].tradeMapped

            # self.Debug(f"**tradeContinuous:{symbol}:{self.Data[symbol].tradeContinuous}")


            # self.Debug(f"**WAP:{symbol}:{self.Time}:{self.Data[symbol].WAP}")       
            # if self.Data[symbol].yesterdayPercentChange is not None:
            #     self.Debug(f"yesterdayPercentChange:{symbol}:{self.Time}:{self.Data[symbol].yesterdayPercentChange}")

            # if self.Data[symbol].RollingYesterdayPercentChange:
            #     self.Debug(f"RollingYesterdayPercentChange:{symbol}:{self.Time}:{self.Data[symbol].RollingYesterdayPercentChange[0]}")

            
            # WORKS - Updated several times in a day - Doesn't give last traded price - gives bid or ask
            # self.Debug(f"Todays ____Close:{self.Securities[self.Data['Lumber'].Mapped].Price}, Date:{self.Time}")
       
        # Works
        # if data.Ticks.ContainsKey(self.Data['Lumber'].Symbol):
        #     if data.Ticks[self.Data['Lumber'].Symbol] is not None:                
                # self.Debug(f"**MAIN** Date:{self.Time}, MappedValue:{self.Data['Lumber'].Mapped.Value}, MappedID:{self.Data['Lumber'].Mapped.ID}, ")             

        # https://www.quantconnect.com/docs/v2/writing-algorithms/datasets/quantconnect/us-futures-security-master#05-Data-Point-Attributes        
        for symbol in self.Data.keys():
            if data.SymbolChangedEvents.ContainsKey(self.Data[symbol].Symbol):
                symbolChangedEvent = data.SymbolChangedEvents[self.Data[symbol].Symbol]
                self.Debug(f"In MAIN Symbol changed: {symbolChangedEvent.OldSymbol} -> {symbolChangedEvent.NewSymbol} \
                EndTime:{symbolChangedEvent.EndTime} DataType:{getDataType(symbolChangedEvent.DataType)}, Expiry: {self.Securities[self.Data[symbol].Mapped].Expiry}")

                          
    # When your algorithm stops executing, LEAN calls the OnEndOfAlgorithm method.
    def OnEndOfAlgorithm(self) -> None:
        # self.Debug(f"self.Alpha.securities:{self.alpha.securities}")
        # self.Debug(f"Total Rows DataFrame:{len(self.percentChangeDF.index)}")
        # self.ObjectStore.Save(f"{14153031}/self.alpha.ModelData", df.reset_index().to_json(date_unit='s'))

        # self.ObjectStore.Save(f"{14153031}/sampleDF", self.alpha.ModelData.to_json(date_unit='s'))
        pass       

    # OnEndOfDay notifies when (Time) each security has finished trading for the day
    def OnEndOfDay(self, symbol: Symbol) -> None:
        # For LBS: Finished Trading on 2023-01-03 15:55:00 
        # For NBS: Finished Trading on 2023-01-03 16:50:00

        # self.Debug(f"Finished Trading on {self.Time} for security {symbol}")

        # dailyFileName =  f"ModelData_{self.Time.date()}"
        # self.ObjectStore.Save(f"{14153031}/{dailyFileName}", self.alpha.ModelData.to_json(date_unit='s'))

        # The OnEndOfDay method is called 10 minutes before closing to allow you to close out your position(s).
        # Clear ModelData DataFrame at end of Day - Issue it it happens 10 minutes or more before market closes so can't capture eod data
        # self.alpha.ModelData = pd.DataFrame()

        # self.Debug(f"OnEndOfDay self.Time:{self.Time}, Symbol:{self.Data['Lumber'].Mapped.Value}")
        pass
                

    def OnWarmUpFinished(self) -> None:
        self.Debug(f"Algorithm Ready@{self.Time}")
        pass