Overall Statistics |
Total Trades 116 Average Win 0.38% Average Loss -0.60% Compounding Annual Return 5.454% Drawdown 15.600% Expectancy -0.294 Net Profit 5.454% Sharpe Ratio 0.374 Probabilistic Sharpe Ratio 24.283% Loss Rate 57% Win Rate 43% Profit-Loss Ratio 0.64 Alpha 0.056 Beta 0.008 Annual Standard Deviation 0.153 Annual Variance 0.023 Information Ratio -0.364 Tracking Error 0.223 Treynor Ratio 7.528 Total Fees $175.81 |
from Selection.FundamentalUniverseSelectionModel import FundamentalUniverseSelectionModel class NadionUncoupledPrism(QCAlgorithm): def Initialize(self): self.SetStartDate(2010, 1, 1) self.SetEndDate(2011, 1, 1) self.SetCash(100000) #self.AddEquity("SPY", Resolution.Daily) #self.AddEquity("QQQ", Resolution.Daily) self.SetBenchmark("SPY") self.UniverseSettings.Resolution = Resolution.Daily self.symbols = [Symbol.Create("SPY", SecurityType.Equity, Market.USA) for ticker in ['SPY', 'TLT', 'QQQ']] self.averages = {} self.AddUniverseSelection(TechnologyUniverseModule()) self.AddRiskManagement(NullRiskManagementModel()) self.SetPortfolioConstruction(NullPortfolioConstructionModel()) self.SetExecution(ImmediateExecutionModel()) self.SetWarmUp(200) def OnData(self, data): if self.IsWarmingUp: return #self.MarketOrder('SPY', 1) for security in self.changes.RemovedSecurities: if security.Invested: self.Liquidate(security.Symbol) for security in self.changes.AddedSecurities: if not security.Invested and security.Symbol not in self.symbols: self.SetHoldings(security.Symbol, .05) def OnSecuritiesChanged(self, changes): self.changes = changes class TechnologyUniverseModule(FundamentalUniverseSelectionModel): #This module selects the most liquid stocks listed on the Nasdaq Stock Exchange. def __init__(self, filterFineData = True, universeSettings = None, securityInitializer = None): #Initializes a new default instance of the TechnologyUniverseModule super().__init__(filterFineData, universeSettings, securityInitializer) self.numberOfSymbolsCoarse = 100 self.numberOfSymbolsFine = 100 self.lastMonth = -1 self.averages = {} def SelectCoarse(self, algorithm, coarse): if algorithm.Time.month == self.lastMonth: return Universe.Unchanged filtered = [x for x in coarse if x.HasFundamentalData and x.Price > 10] if len(filtered) == 0: return Universe.Unchanged sorted_by_dollar_volume = sorted(filtered, key = lambda x: x.DollarVolume, reverse=True)[:self.numberOfSymbolsCoarse] self.last_coarse = {cf.Symbol: cf for cf in sorted_by_dollar_volume} return list(self.last_coarse.keys()) def SelectFine(self, algorithm, fine): filtered = [x for x in fine if x.CompanyReference.CountryId == "USA" \ and x.CompanyReference.PrimaryExchangeID == "NAS" \ and x.CompanyReference.IndustryTemplateCode == "N" \ and (algorithm.Time - x.SecurityReference.IPODate).days > 180] sorted_by_dollar_volume = sorted(filtered, key = lambda x: self.last_coarse[x.Symbol].DollarVolume, reverse=True) # Get warmup history new_symbols = [] for security in sorted_by_dollar_volume: symbol = security.Symbol if symbol not in self.averages: new_symbols.append(symbol) history = algorithm.History(new_symbols, 200, Resolution.Daily) selected = [] for security in sorted_by_dollar_volume: symbol = security.Symbol if symbol in new_symbols: self.averages[symbol] = SelectionData(history.loc[symbol]) self.averages[symbol].update(algorithm.Time, self.last_coarse[symbol].AdjustedPrice) #security.AdjustedPrice) if self.averages[symbol].is_ready() and self.averages[symbol].fast > self.averages[symbol].slow: selected.append(symbol) if len(selected) == 0: return Universe.Unchanged self.lastMonth = algorithm.Time.month return selected[:20] class SelectionData(): # Update the constructor to accept a history array def __init__(self, history): self.slow = ExponentialMovingAverage(200) self.fast = ExponentialMovingAverage(5) # Loop over the history data and update the indicators for time, row in history.iterrows(): self.fast.Update(time, row.close) self.slow.Update(time, row.close) def is_ready(self): return self.slow.IsReady and self.fast.IsReady def update(self, time, price): self.fast.Update(time, price) self.slow.Update(time, price) class NullPortfolioConstructionModel(PortfolioConstructionModel): def CreateTargets(self, algorithm, insights): return [] class ImmediateExecutionModel(ExecutionModel): def __init__(self): self.targetsCollection = PortfolioTargetCollection() def Execute(self, algorithm, targets): # for performance we check count value, OrderByMarginImpact and ClearFulfilled are expensive to call self.targetsCollection.AddRange(targets) if self.targetsCollection.Count > 0: for target in self.targetsCollection.OrderByMarginImpact(algorithm): # calculate remaining quantity to be ordered quantity = OrderSizing.GetUnorderedQuantity(algorithm, target) if quantity != 0: algorithm.MarketOrder(target.Symbol, quantity) self.targetsCollection.ClearFulfilled(algorithm)
from Selection.FundamentalUniverseSelectionModel import FundamentalUniverseSelectionModel class TechnologyUniverseModule(FundamentalUniverseSelectionModel): ''' This module selects the most liquid stocks listed on the Nasdaq Stock Exchange. ''' def __init__(self, filterFineData = True, universeSettings = None, securityInitializer = None): '''Initializes a new default instance of the TechnologyUniverseModule''' super().__init__(filterFineData, universeSettings, securityInitializer) self.numberOfSymbolsCoarse = 1000 self.numberOfSymbolsFine = 100 self.dollarVolumeBySymbol = {} self.lastMonth = -1 def SelectCoarse(self, algorithm, coarse): ''' Performs a coarse selection: -The stock must have fundamental data -The stock must have positive previous-day close price -The stock must have positive volume on the previous trading day ''' if algorithm.Time.month == self.lastMonth: return Universe.Unchanged sortedByDollarVolume = sorted([x for x in coarse if x.HasFundamentalData and x.Volume > 0 and x.Price > 0], key = lambda x: x.DollarVolume, reverse=True)[:self.numberOfSymbolsCoarse] self.dollarVolumeBySymbol = {x.Symbol:x.DollarVolume for x in sortedByDollarVolume} # If no security has met the QC500 criteria, the universe is unchanged. if len(self.dollarVolumeBySymbol) == 0: return Universe.Unchanged return list(self.dollarVolumeBySymbol.keys()) def SelectFine(self, algorithm, fine): ''' Performs a fine selection: -The company's headquarter must in the U.S. -The stock must be traded on the NASDAQ stock exchange -The stock must be in the Industry Template Code catagory N -At least half a year since its initial public offering ''' # Filter stocks and sort on dollar volume sortedByDollarVolume = sorted([x for x in fine if x.CompanyReference.CountryId == "USA" and x.CompanyReference.PrimaryExchangeID == "NAS" and x.CompanyReference.IndustryTemplateCode == "N" and (algorithm.Time - x.SecurityReference.IPODate).days > 180], key = lambda x: self.dollarVolumeBySymbol[x.Symbol], reverse=True) if len(sortedByDollarVolume) == 0: return Universe.Unchanged self.lastMonth = algorithm.Time.month return [x.Symbol for x in sortedByDollarVolume[:self.numberOfSymbolsFine]]