Overall Statistics |
Total Trades 6 Average Win 32.04% Average Loss -5.17% Compounding Annual Return 44.996% Drawdown 20.200% Expectancy 3.800 Net Profit 57.131% Sharpe Ratio 1.941 Probabilistic Sharpe Ratio 73.724% Loss Rate 33% Win Rate 67% Profit-Loss Ratio 6.20 Alpha 0.421 Beta 0.31 Annual Standard Deviation 0.256 Annual Variance 0.066 Information Ratio 0.785 Tracking Error 0.32 Treynor Ratio 1.602 Total Fees $6.00 Estimated Strategy Capacity $13000000.00 |
### <summary> ### Simple SMA Strategy intended to provide a minimal algorithm example using ### one indicator with the most basic plotting ### </summary> from datetime import timedelta from System.Drawing import Color class SMAAlgorithm(QCAlgorithm): # 1 - Add the FANG stocks (Facebook, Amazon, , Netflix, Google) # 2 - Cycle through stocks # 3 - Cycle through list adding each equity # 3 - Create an indicator dict like backtrader def Initialize(self): '''Initialise the data and resolution required, as well as the cash and start-end dates for your algorithm. All algorithms must initialized.''' # Set our main strategy parameters self.SetStartDate(2020,1,1) # Set Start Date #self.SetEndDate(2018,1,1) # Set End Date self.SetCash(10000) # Set Strategy Cash SMA_Period = 14 # SMA Look back period self.SMA_OB = 75 # SMA Overbought level self.SMA_OS = 50 # SMA Oversold level self.Allocate = 0.20 # Percentage of captital to allocate self.Equities = ["TSLA", "FB"] #self.smaDaily = SMA(symbol, 200, Resolution.Daily) self.Indicators = dict() self.Charts = dict() self.Consolidators = dict() # Find more symbols here: http://quantconnect.com/data for Symbol in self.Equities: self.Consolidators[Symbol] = dict() self.AddEquity(Symbol, Resolution.Minute) # Each Equity requires its own consoilidator! See: # https://www.quantconnect.com/forum/discussion/1936/multiple-consolidators/p1 # https://www.quantconnect.com/forum/discussion/1587/multiple-symbol-indicator-values-in-consolidated-bar-handler/p1 # ------------------------ # Create our consolidators self.Consolidators[Symbol]['onDayCon'] = TradeBarConsolidator(timedelta(days=1)) self.Consolidators[Symbol]['minutesCon'] = TradeBarConsolidator(timedelta(minutes=20)) # Register our Handlers self.Consolidators[Symbol]['onDayCon'].DataConsolidated += self.onDay self.Consolidators[Symbol]['minutesCon'].DataConsolidated += self.minutes20 self.Indicators[Symbol] = dict() self.Indicators[Symbol]['SMA'] = dict() self.Indicators[Symbol]['Ichimoku'] = dict() self.Indicators[Symbol]['SMA']['SMA200'] = self.SMA(Symbol, 200, Resolution.Daily) self.Indicators[Symbol]['SMA']['SMA50'] = self.SMA(Symbol, 50, Resolution.Daily) self.Indicators[Symbol]['Ichimoku'] = self.ICHIMOKU(Symbol,9, 26, 26, 52, 26, 26, Resolution.Daily) # Register the indicaors with our stock and consolidator self.RegisterIndicator(Symbol, self.Indicators[Symbol]['SMA']['SMA50'], self.Consolidators[Symbol]['onDayCon']) self.RegisterIndicator(Symbol, self.Indicators[Symbol]['SMA']['SMA200'], self.Consolidators[Symbol]['onDayCon']) self.RegisterIndicator(Symbol, self.Indicators[Symbol]['Ichimoku'], self.Consolidators[Symbol]['onDayCon']) # Finally add our consolidators to the subscription # manager in order to receive updates from the engine self.SubscriptionManager.AddConsolidator(Symbol, self.Consolidators[Symbol]['onDayCon']) self.Charts[Symbol] = dict() # Plot the SMA SMAChartName = Symbol+" TradePlot" self.Charts[Symbol][' TradePlot'] = Chart(SMAChartName, ChartType.Stacked) self.Charts[Symbol][' TradePlot'].AddSeries(Series('Buy', SeriesType.Scatter, '$', Color.Green, ScatterMarkerSymbol.Diamond)) self.Charts[Symbol][' TradePlot'].AddSeries(Series('Sell', SeriesType.Scatter, '$', Color.Red, ScatterMarkerSymbol.Diamond)) self.Charts[Symbol][' TradePlot'].AddSeries(Series("200", SeriesType.Line,"", Color.Red)) self.Charts[Symbol][' TradePlot'].AddSeries(Series("50", SeriesType.Line,"", Color.Blue)) self.Charts[Symbol][' TradePlot'].AddSeries(Series("close", SeriesType.Line,"", Color.Gray)) self.Charts[Symbol][' TradePlot'].AddSeries(Series("SenkouA", SeriesType.Line,"", Color.Orange)) self.Charts[Symbol][' TradePlot'].AddSeries(Series('SenkouB', SeriesType.Line,"", Color.Brown)) self.Charts[Symbol][' TradePlot'].AddSeries(Series('Tenkan', SeriesType.Line, "", Color.Turquoise)) self.Charts[Symbol][' TradePlot'].AddSeries(Series('Kijun', SeriesType.Line,"", Color.Purple)) self.AddChart(self.Charts[Symbol][' TradePlot']) '''# Create a custom volume chart VolChartName = Symbol+" Volume" self.Charts[Symbol]['VOL'] = Chart(VolChartName, ChartType.Stacked) self.Charts[Symbol]['VOL'].AddSeries(Series('Buying Volume', SeriesType.Bar)) self.Charts[Symbol]['VOL'].AddSeries(Series('Selling Volume', SeriesType.Bar)) self.AddChart(self.Charts[Symbol]['VOL']) ''' # Ensure that the Indicator has enough data before trading. self.SetWarmUp(timedelta(days= 200)) self.dayCount = 0 self.countMinutes = 0 def onDay(self,sender,bar): # Make sure we are not warming up if self.IsWarmingUp: return Symbol = str(bar.get_Symbol()) Volume = bar.Volume #self.Plot(Symbol+" volume", 'Buying Volume', Volume) close= bar.Close SMA200 = self.Indicators[Symbol]['SMA']['SMA200'].Current.Value SMA50 = self.Indicators[Symbol]['SMA']['SMA50'].Current.Value tenkan = self.Indicators[Symbol]['Ichimoku'].Tenkan.Current.Value kijun = self.Indicators[Symbol]['Ichimoku'].Kijun.Current.Value senkouA = self.Indicators[Symbol]['Ichimoku'].SenkouA.Current.Value senkouB = self.Indicators[Symbol]['Ichimoku'].SenkouB.Current.Value SenkouAFuture = ( self.Indicators[Symbol]['Ichimoku'].Tenkan.Current.Value + self.Indicators[Symbol]['Ichimoku'].Current.Value) / 2 SenkouBFuture = (self.Indicators[Symbol]['Ichimoku'].SenkouBMaximum.Current.Value + self.Indicators[Symbol]['Ichimoku'].SenkouBMinimum.Current.Value) / 2 self.Plot(Symbol +' TradePlot', '200', SMA200) self.Plot(Symbol +' TradePlot', '50', SMA50) self.Plot(Symbol +' TradePlot', 'close', close) self.Plot(Symbol +' TradePlot', 'Tenkan', tenkan) self.Plot(Symbol +' TradePlot', 'Kijun', kijun) self.Plot(Symbol +' TradePlot', 'SenkouA', senkouA) self.Plot(Symbol +' TradePlot', 'SenkouB', senkouB) # Determine our entry and exit conditions # Do it here to avoid long lines later Long_Cond1 = SMA200 < SMA50 Long_Cond2 = kijun > tenkan # above cloud Long_Cond3 = close > senkouA Long_Cond4 = close > senkouB Long_Cond5 = close > SMA200 Long_Cond6 = tenkan > senkouA Long_Cond7 = kijun > senkouB Long_Cond8 = close > SMA50 Long_Cond9 = SenkouAFuture > SenkouBFuture #EXIT conditions Exit_Cond1 = kijun < close Exit_Cond2 = close < senkouA Exit_Cond3 = close < senkouB if not self.Securities[Symbol].Invested: # If not, the long conditions if all([Long_Cond1, Long_Cond2, Long_Cond3, Long_Cond4, Long_Cond5, Long_Cond6, Long_Cond7, Long_Cond8,Long_Cond9]): # Buy! self.SetHoldings(Symbol, self.Allocate) self.Plot(Symbol +' TradePlot', 'Buy', close ) else: if self.Securities[Symbol].Invested: if all([Exit_Cond1, Exit_Cond2, Exit_Cond3]): # Sell! self.Liquidate(Symbol) self.Plot(Symbol +' TradePlot', 'Sell', close) ''' if self.dayCount> 3 : return self.Debug(" onDay") Symbol = str(bar.get_Symbol()) self.Debug(Symbol) self.Debug(bar.Close) self.dayCount = self.dayCount + 1 ''' def minutes20(self,sender,bar): if self.IsWarmingUp: return #debug ''' if self.countMinutes> 3 : return self.Debug(" 20Minutes") Symbol = str(bar.get_Symbol()) self.Debug(Symbol) self.Debug(bar.Close) self.countMinutes = self.countMinutes + 1 ''' def OnData(self, data): '''OnData event is the primary entry point for your algorithm. Each new data point will be pumped in here. Arguments: data: Slice object keyed by symbol containing the stock data ''' # Make sure we are not warming up if self.IsWarmingUp: return