Overall Statistics |
Total Trades 0 Average Win 0% Average Loss 0% Compounding Annual Return 0% Drawdown 0% Expectancy 0 Net Profit 0% Sharpe Ratio 0 Loss Rate 0% Win Rate 0% Profit-Loss Ratio 0 Alpha 0 Beta 0 Annual Standard Deviation 0 Annual Variance 0 Information Ratio 0 Tracking Error 0 Treynor Ratio 0 Total Fees $0.00 |
import numpy as np from pprint import pprint import pandas as pd from datetime import timedelta ### <summary> ### Basic template algorithm simply initializes the date range and cash. This is a skeleton ### framework you can use for designing an algorithm. ### </summary> class BasicTemplateAlgorithm(QCAlgorithm): '''Basic template algorithm simply initializes the date range and cash''' def Initialize(self): '''Initialise the data and resolution required, as well as the cash and start-end dates for your algorithm. All algorithms must initialized.''' self.SetStartDate(2016,10,01) #Set Start Date self.SetEndDate(2016,11,16) #Set End Date self.SetCash(25000) #Set Strategy Cash # Find more symbols here: http://quantconnect.com/data # self.AddUniverse(self.CoarseSelectionFunction) self.AddEquity("GOOG", Resolution.Daily) option = self.AddOption("GOOG", Resolution.Daily) option.SetFilter(-10, +10, timedelta(0), timedelta(180)) # option.SetFilter(-2, 2, TimeSpan.FromDays(30), TimeSpan.FromDays(180)); # self.Schedule.On(self.DateRules.Every([DayOfWeek.Thursday]), self.TimeRules.BeforeMarketClose("SPY", 45), Action(self.MakeTrades)) def CoarseSelectionFunction(self, coarse): '''Take the top 5 by dollar volume using coarse''' # sort descending by daily dollar volume sortedByDollarVolume = sorted(coarse, \ key=lambda x: x.DollarVolume, reverse=True) # add Options # for x in sortedByDollarVolume[:5]: # self.AddOption(x.Symbol.Value, Resolution.Daily) # we need to return only the symbol objects return [ x.Symbol for x in sortedByDollarVolume[:5] ] def GetOptionTrades(self, data): '''figure out which trades to make, and trade size as well''' trades_to_make = [] return trades_to_make def MakeTrades(self, data): '''Make Options Trades''' option_trades = self.GetOptionTrades(data) def OnData(self,slice): self.Log("ondata") for i in slice.OptionChains: optionchain = i.Value self.Log("underlying price:" + str(optionchain.Underlying.Price)) df = pd.DataFrame([[x.Right,float(x.Strike),x.Expiry,float(x.BidPrice),float(x.AskPrice)] for x in optionchain], index=[x.Symbol.Value for x in optionchain], columns=['type(call 0, put 1)', 'strike', 'expiry', 'ask price', 'bid price']) self.Log(str(df))