Overall Statistics |
Total Trades 0 Average Win 0% Average Loss 0% Compounding Annual Return 0% Drawdown 0% Expectancy 0 Net Profit 0% Sharpe Ratio 0 Probabilistic Sharpe Ratio 0% Loss Rate 0% Win Rate 0% Profit-Loss Ratio 0 Alpha 0 Beta 0 Annual Standard Deviation 0 Annual Variance 0 Information Ratio 0 Tracking Error 0 Treynor Ratio 0 Total Fees $0.00 Estimated Strategy Capacity $0 Lowest Capacity Asset |
import clr clr.AddReference("System") clr.AddReference("QuantConnect.Algorithm") clr.AddReference("QuantConnect.Common") from System import * from QuantConnect import * from QuantConnect.Algorithm import * #from QuantConnect.Algorithm.Framework import * #from QuantConnect.Algorithm.Framework.Alphas import * #from QuantConnect.Algorithm.Framework.Execution import * #from QuantConnect.Algorithm.Framework.Risk import * #from QuantConnect.Algorithm.Framework.Selection import * #from QuantConnect.Algorithm.Framework.Portfolio import * from QuantConnect.Data.Consolidators import * from QuantConnect.Indicators import * from QuantConnect.Data.Market import TradeBar from QuantConnect.Python import * from QuantConnect.Storage import * import numpy as np from QuantConnect import * from QuantConnect.Parameters import * from QuantConnect.Benchmarks import * from QuantConnect.Brokerages import * from QuantConnect.Util import * from QuantConnect.Interfaces import * from QuantConnect.Algorithm import * from QuantConnect.Algorithm.Framework import * from QuantConnect.Algorithm.Framework.Selection import * from QuantConnect.Algorithm.Framework.Alphas import * from QuantConnect.Algorithm.Framework.Portfolio import * from QuantConnect.Algorithm.Framework.Execution import * from QuantConnect.Algorithm.Framework.Risk import * from QuantConnect.Indicators import * from QuantConnect.Data import * from QuantConnect.Data.Consolidators import * from QuantConnect.Data.Custom import * from QuantConnect.Data.Fundamental import * from QuantConnect.Data.Market import * from QuantConnect.Data.UniverseSelection import * from QuantConnect.Notifications import * from QuantConnect.Orders import * from QuantConnect.Orders.Fees import * from QuantConnect.Orders.Fills import * from QuantConnect.Orders.Slippage import * from QuantConnect.Scheduling import * from QuantConnect.Securities import * from QuantConnect.Securities.Equity import * from QuantConnect.Securities.Forex import * from QuantConnect.Securities.Interfaces import * from datetime import date, datetime, timedelta from QuantConnect.Python import * from QuantConnect.Storage import * from datetime import datetime import decimal import heapq from itertools import groupby from heapq import heappush import random from decimal import * from QuantConnect import Market class limitorderbook2(QCAlgorithm): def Initialize(self): self.SetStartDate(2013, 10, 7) self.SetEndDate(2013, 10, 7) self.SetCash(1000000) self.symbol=self.AddEquity("SPY", Resolution.Tick, Market.USA, True, 0, True).Symbol self.Nlevel = 5 self.cont = 0 self.Lb = [] self.Ls = [] self.Schedule.On(self.DateRules.EveryDay(self.symbol), self.TimeRules.Every(timedelta(minutes=5)), self.plotting) def OnData(self, data): #if not data.ContainsKey(self.symbol) and not data.Ticks.ContainsKey(self.symbol): # return if self.cont<300000: numTick=0 for tick in data.Ticks[self.symbol]: numTick+=1 if tick.TickType == TickType.Trade: if self.Lb and self.Ls : if tick.Price in [-x for x in self.Lb[:][0]]: p, v, d = tick.Price, tick.Quantity, 1 order=[[p,v,d]] self.Lb, self.Ls = self.getLOrders(order, self.Lb, self.Ls) if tick.Price in self.Ls[:][0]: p, v, d = tick.Price, tick.Quantity, 0 order=[[p,v,d]] self.Lb, self.Ls = self.getLOrders(order, self.Lb, self.Ls) if tick.TickType == TickType.Quote: if tick.AskPrice>1: p, v, d = tick.AskPrice, tick.AskSize, 1 else: p, v, d = tick.BidPrice, tick.BidSize, 0 order=[[p,v,d]] self.Lb, self.Ls = self.getLOrders(order, self.Lb, self.Ls) self.cont+=1 def plotting(self): if self.Lb and self.Ls and self.Time.hour < 14: self.Debug(self.Time) self.Plot("MidPrice", "Price", (-self.Lb[-1][0]+self.Ls[0][0])/2) Lb = [[float(Decimal("%.2f"%(-item[0]))) , int(Decimal("%.2f"%(item[1])))] for item in self.Lb] Ls = [[float(Decimal("%.2f"%(item[0]))) , int(Decimal("%.2f"%(item[1])))] for item in self.Ls] sumVolBid = sum(Lb[self.Nlevel-1::-1][1]) sumVolAsk = sum(Ls[0:self.Nlevel][1]) imbalanceRatio = (sumVolBid-sumVolAsk)/(sumVolBid+sumVolAsk) self.Plot("Imbalance Ratio", "Value", imbalanceRatio) self.Debug(str(Lb[self.Nlevel-1::-1])+" "+str(Ls[0:self.Nlevel])) if self.Time.hour > 14: self.Quit() def getLOrders(self,orders,bu,se): for x in orders: a,b,t = x[0],x[1],x[2] n = b if t == 0: # buy while n > 0 and se: p,num = heapq.heappop(se) if p > a: heapq.heappush(se, [p, num]) break if num <= n: n -= num while n>0: p,num = heapq.heappop(se) if num <= n: n -= num else: heapq.heappush(se, [p, num-n]) n = 0 else: heapq.heappush(se, [p, num-n]) n = 0 if n > 0: heapq.heappush(bu,[-a,n]) else: while n > 0 and bu: p, num = heapq.heappop(bu) if -p < a: heapq.heappush(bu, [p, num]) break if num <= n: n -= num while n>0: p,num = heapq.heappop(bu) if num <= n: n -= num else: heapq.heappush(bu, [p, num-n]) # fill all that order then we have num-n volume n = 0 else: heapq.heappush(bu, [p, num-n]) n = 0 if n > 0: heapq.heappush(se,[a,n]) bu=[[k, sum(v for _, v in g)] for k, g in groupby(sorted(bu), key = lambda x: x[0])] se=[[k, sum(v for _, v in g)] for k, g in groupby(sorted(se), key = lambda x: x[0])] return bu, se