Overall Statistics |
Total Trades 0 Average Win 0% Average Loss 0% Compounding Annual Return 0% Drawdown 0% Expectancy 0 Net Profit 0% Sharpe Ratio 0 Loss Rate 0% Win Rate 0% Profit-Loss Ratio 0 Alpha 0 Beta 0 Annual Standard Deviation 0 Annual Variance 0 Information Ratio 0 Tracking Error 0 Treynor Ratio 0 Total Fees $0.00 |
import numpy as np ### <summary> ### Example of a simple class that acts as a manualy updated indicator using pandas to ### calculate the rolling std of percent returns of the close price for each asset. ### </summary> class BasicOOPAlgorithm(QCAlgorithm): ''' Example of a simple class that acts as a manualy updated indicator using pandas to calculate the rolling std of percent returns of the close price for each asset. ''' def Initialize(self): '''Initialise the data and resolution required, as well as the cash and start-end dates for your algorithm. All algorithms must initialized.''' self.SetStartDate(2013,10,1) #Set Start Date self.SetEndDate(2013,10,5) #Set End Date self.SetCash(100000) #Set Strategy Cash self.resolution = Resolution.Daily self.universe = [ self.AddEquity("SPY", self.resolution).Symbol, self.AddEquity("AAPL", self.resolution).Symbol, self.AddEquity("C", self.resolution).Symbol, ] # Store per-asset indicators in a dictionary self.std_of_returns = {} for symbol in self.universe: # initialize the object self.std_of_returns[symbol] = StdOfReturns(self, symbol, 10, self.resolution) def OnData(self, data): '''OnData event is the primary entry point for your algorithm. Each new data point will be pumped in here. Arguments: data: Slice object keyed by symbol containing the stock data ''' for symbol in self.universe: # update the rolling metric with new data self.std_of_returns[symbol].update(self.Securities[symbol].Price) self.Log("%s\t:\t%0.3f"%(symbol, self.std_of_returns[symbol].value)) class StdOfReturns(): def __init__(self, algo, symbol, window, resolution): # set up params of per-asset rolling metric calculation self.symbol = symbol self.window = window self.resolution = resolution # download the window. Prob not great to drag algo scope in here. Could get outside and pass in. self.history = algo.History([symbol], window, self.resolution).close.values # calulate the metrics for the current window self.compute() def update(self, value): # update history, retain length self.history = np.append(self.history, float(value))[1:] # calulate the metrics for the current window self.compute() def compute(self): # calc percent returns r_p = np.diff(self.history)/self.history[:-1] # calc std of returns for current widow std_r = np.std(r_p) # update value self.value = std_r