Overall Statistics |
Total Trades 6 Average Win 0% Average Loss -0.08% Compounding Annual Return -1.458% Drawdown 0.300% Expectancy -1 Net Profit -0.257% Sharpe Ratio -2.765 Probabilistic Sharpe Ratio 1.205% Loss Rate 100% Win Rate 0% Profit-Loss Ratio 0 Alpha -0.011 Beta 0.005 Annual Standard Deviation 0.004 Annual Variance 0 Information Ratio 1.034 Tracking Error 0.199 Treynor Ratio -2.305 Total Fees $3.00 |
import decimal import datetime import pandas as pd import numpy as np from EarningDates import (earningDates) class EarningsOptionsTrade(QCAlgorithm): def Initialize(self): self.SetStartDate(2018, 1, 22) # Set Start Date self.SetEndDate(2018, 3, 26) self.SetCash(100000) # Set Strategy Cash # self.AddEquity("SPY", Resolution.Minute) # self.UniverseSettings.Resolution = Resolution.Daily # self.AddUniverse(self.MyCoarseFilterFunction,self.FineSelectionFunction) self.earningDates = earningDates self.symbols = [] for ticker in self.earningDates.keys(): #print(ticker) equity = self.AddEquity(ticker, Resolution.Minute) equity.SetDataNormalizationMode(DataNormalizationMode.Raw) option = self.AddOption(ticker,Resolution.Minute) self.symbols.append(option.Symbol) option.SetFilter(lambda universe: universe.WeeklysOnly().Strikes(-10, 10).Expiration(timedelta(0), timedelta(30))) # option.SetFilter(-10, +10, timedelta(0), timedelta(30)) self.marketOrder = {} self.symbolToTrade = {} self.price = 0.05 # One Schedule function that will run all days at 12:00 to look if the current time is 2 days before earnging date self.Schedule.On(self.DateRules.EveryDay(), self.TimeRules.At(9,31), self.symbolDate) self.Schedule.On(self.DateRules.EveryDay(), self.TimeRules.Every(timedelta(minutes=60)), self.portfolio) def MyCoarseFilterFunction(self,coarce): # The first filter is to select stocks withs fundamental data, and price between the MyLeastPrice and MyMostPrice values filtered = [x for x in coarce if (x.HasFundamentalData) and x.Volume > 1000000] first_filter_symbol = [x.Symbol for x in filtered] return first_filter_symbol def FineSelectionFunction(self,fine): ''' This function filter stocks that belong to the Restaurant and RetailApparel and Specialty industry groups from Morning Stars. Secondly, the function select symbols with a market cap higher than 2 billions ''' market_cap = {} #first_filter = [x for x in fine if ((x.AssetClassification.MorningstarIndustryGroupCode == 10216) or #(x.AssetClassification.MorningstarIndustryGroupCode == 10217))] filteredFine = [x for x in fine if x.AssetClassification.MorningstarIndustryGroupCode == MorningstarIndustryGroupCode.Restaurants] # or x.AssetClassification.MorningstarIndustryGroupCode == MorningstarIndustryGroupCode.RetailApparelAndSpecialty] # Calculate the market cap and add the "MarketCap" property to fine universe object for i in filteredFine: market_cap[i] = (i.EarningReports.BasicAverageShares.ThreeMonths * i.EarningReports.BasicEPS.TwelveMonths * i.ValuationRatios.PERatio) # self.Debug(self.Time.date()) # self.Debug(self.Time.date() + timedelta(days=1)) filteredFine = [x for x in filteredFine if (market_cap[x] > 1000000000) and (self.Time.date() - timedelta(days=2) <= x.EarningReports.FileDate.date()) and x.EarningReports.FileDate != datetime.time()] earningDates = [x.EarningReports.FileDate for x in filteredFine] #self.Debug(earningDates) symbols = [x.Symbol for x in filteredFine] # symbolMethods = [dir(x.ID)[22:] for x in symbols_] # self.Debug(symbolMethods) classificationCode = [x.AssetClassification.MorningstarIndustryGroupCode for x in filteredFine] marketCap = [market_cap[x] for x in filteredFine] tickers = [x.ID.Symbol for x in symbols] earningDatesBySymbol = list(zip(tickers,earningDates,classificationCode,marketCap)) #self.Debug(earningDatesBySymbol) #self.Debug([x.ID.Symbol for x in symbols]) df = pd.DataFrame(earningDatesBySymbol, columns=['ticker', 'earningDates','MorningStarCode','MarketCap']) df.sort_values('earningDates',inplace=True,ascending=False) if len(df) > 1: self.Debug('Current date is %s' % self.Time.date()) self.Debug(df) self.Log(df) return symbols def OnData(self, slice): '''OnData event is the primary entry point for your algorithm. Each new data point will be pumped in here. Arguments: data: Slice object keyed by symbol containing the stock data ''' # if symbol not in self.symbolToTrade.keys(): # self.symbolToTrade[symbol] = False for ticker in self.earningDates.keys(): if ticker not in self.symbolToTrade.keys(): self.symbolToTrade[ticker] = False # self.Debug(self.Time) # if self.Time.hour ==15 and self.Time.minute ==45: for symbol in self.earningDates.keys(): if self.symbolToTrade[symbol]: self.Debug('For symbol {} current Date of {} is one day prior Earnings'.format(symbol,self.Time)) self.selectOption(slice,symbol) self.symbolToTrade[symbol] = False def symbolDate(self): ''' This function runs every day at market open, and check if current date is one day before any dates within the earningDates. If this is the case, the symbolToTrade dictionary for that symbol is equal to True, and this trigger a transaction for that symbol in the OnData function. ''' symbolDates = self.earningDates # self.Debug(symbolDates) for key, val in symbolDates.items(): # self.Debug('Date is {}'.format(date)) for date in val[0]: earningDate = datetime.datetime.strptime(date,'%m-%d-%Y').date() if earningDate.year == self.Time.year and earningDate.month == self.Time.month: # self.Debug('Earning Date for symbol {} is {}'.format(key,earningDate)) # self.Debug('Current Date {}'.format(self.Time.date())) if (earningDate - timedelta(days=1)) == self.Time.date() : print('One Day prior Earngings for symbol {} on Date {}'.format(key,self.Time.date())) self.symbolToTrade[key] = True else: self.symbolToTrade[key] = False # return self.symbolToTrade[symbol] def selectOption(self,slice,ticker): ''' In this function we select the right contract for the symbol that is one day prior it earning date and look for a contract with a price of 0.05 or most near to 0.05 over the option chain for that symbol. Then, send a market order to buy that contract. ''' #for symbol in self.symbols: # self.Debug('symbol To String {}'.format(symbol.ToString())) # self.Debug('ticker {}'.format(ticker)) for kvp in slice.OptionChains: # self.Debug('option Chain for symbol {}'.format(ticker)) if (slice.OptionChains.Count == 0): self.Debug('There are not options contracts in this chain at date %s' % self.Time) return # self.Debug('kvp.Key %s' % kvp.Key) # self.Debug(dir(kvp.Key)[12:]) # self.Debug(dir(kvp.Key.ID)[22:]) # self.Debug('chain symbol %s' % kvp.Key.ID.Symbol) # self.Debug('kvp.Key.Value {}'.format(kvp.Key.Value)) # self.Debug('kvp.key.ID.Date is %s' % kvp.Key.ID.Date) #self.Debug('symbol is {} ticker is {}'.format(symbol,ticker)) self.Debug('ticker is %s' % ticker) self.Debug('kvp.Key.ID.Symbol %s' % kvp.Key.ID.Symbol ) if ticker == kvp.Key.ID.Symbol: #in kvp.Key.ID.Symbol: #.ToString: chain = kvp.Value # Select At the Money calls and puts # Make 2 lists called atm_calls and atm_puts otm_puts = [x for x in chain if x.Strike <= x.UnderlyingLastPrice and x.Right == 1 and (x.Expiry.date() - self.Time.date()).days <= 7] if len(otm_puts) == 0: self.Debug('There are not options contract that meet conditions for symbol {}'.format(symbol)) prices = [x.LastPrice for x in otm_puts] expiration = [x.Expiry for x in otm_puts] contracts = [x.Symbol.Value for x in otm_puts] self.Debug(contracts) self.Debug(expiration) self.Debug(prices) contractIndex = (np.abs(np.array(prices)- self.price)).argmin() contract = otm_puts[contractIndex] price = contract.LastPrice strike = contract.Strike expiration = contract.Expiry.date() underlying = contract.UnderlyingLastPrice symbol = contract.Symbol.Value self.contract = contract.Symbol self.Debug('Contract selected is {} with price {} expiry {} strike {} underlying {}'.format(self.contract,price,expiration,strike,underlying)) self.marketOrder[symbol] = self.Buy(self.contract,1) def portfolio(self): option_invested = [x.Key for x in self.Portfolio if x.Value.Invested and x.Value.Type==SecurityType.Option] for contract in option_invested: optionContract = self.Securities[contract].Symbol #self.Debug(optionContract) #self.Debug(dir(optionContract)) #self.Debug(contract.Underlying) #self.Debug(dir(contract)[12:]) underlying = self.Securities[contract.Underlying].Price quantity = self.Portfolio[contract].Quantity lastPrice = self.Securities[contract].Price profits = round(self.Portfolio[contract].UnrealizedProfit,0) profit_percentage = self.Portfolio[contract].UnrealizedProfitPercent self.Debug('On Date {} Profit percentage and profit for contract {} are {} {}'.format(self.Time.date(),optionContract,profit_percentage,profits)) if (profit_percentage > 5): self.Liquidate(contract) self.Debug('Sell contract {} with profit/loss of {} {}' % (contract, profits,profit_percentage)) def OnOrderEvent(self, orderEvent): ''' Event when the order is filled. Debug log the order fill. :OrderEvent:''' self.Log(str(orderEvent)) order = self.Transactions.GetOrderById(orderEvent.OrderId) self.Debug("{0}: {1}: {2}".format(self.Time, order.Type, orderEvent))
earningDates = {'BABA': [['10-30-2020', '08-13-2020', '05-13-2020', '01-28-2020', '11-01-2019', '08-15-2019', '05-15-2019', '01-30-2019', '11-02-2018', '08-23-2018', '05-04-2018', '02-01-2018', '11-02-2017', '08-17-2017', '05-18-2017']], 'BLMN': [['11-04-2020', '07-29-2020', '04-24-2020', '02-12-2020', '11-06-2019', '07-31-2019', '04-26-2019', '02-14-2019', '10-29-2018', '07-30-2018', '04-26-2018', '02-22-2018', '11-03-2017', '07-26-2017', '04-26-2017', '02-17-2017']], 'BZUN': [['11-19-2020', '08-19-2020', '05-27-2020', '10-04-2020', '11-21-2019', '08-21-2019', '05-29-2019', '10-06-2019', '11-21-2018', '08-14-2018', '05-17-2018', '10-06-2018', '11-21-2017', '08-21-2017', '02-21-2017']], 'EAT': [['10-28-2020', '08-11-2020', '04-28-2020', '01-29-2020', '10-30-2019', '08-13-2019', '04-30-2019', '01-29-2019', '10-30-2018', '08-14-2018', '05-01-2018', '01-30-2018', '11-01-2017', '08-10-2017', '04-25-2017']], 'HD': [['11-17-2020', '08-18-2020', '05-19-2020', '02-25-2020', '11-19-2019', '08-20-2019', '05-21-2019', '02-26-2019', '11-13-2018', '08-14-2018', '05-15-2018', '02-20-2018', '11-14-2017', '08-15-2017', '05-16-2017', '02-21-2017']], 'MCD': [['10-20-2020', '07-24-2020', '04-28-2020', '01-28-2020', '10-22-2019', '07-26-2019', '04-30-2019', '01-30-2019', '10-23-2018', '07-26-2018', '04-30-2018', '01-30-2018', '10-24-2017', '07-25-2017', '04-25-2017']], 'PLAY': [['09-08-2020', '06-09-2020', '10-31-2020', '11-11-2019', '09-10-2019', '06-11-2019', '04-02-2019', '11-11-2018', '09-14-2018', '06-12-2018', '04-04-2018', '04-03-2018', '11-07-2017', '09-05-2017', '06-08-2017', '10-28-2017']], 'PZZA': [['11-04-2020', '08-04-2020', '05-05-2020', '02-24-2020', '11-06-2019', '08-06-2019', '05-07-2019', '02-26-2019', '11-06-2018', '08-07-2018', '05-08-2018', '02-27-2018', '10-31-2017', '08-01-2017', '05-02-2017', '02-21-2017']], 'SBUX': [['10-29-2020', '07-28-2020', '04-28-2020', '01-28-2020', '10-30-2019', '07-25-2019', '04-25-2019', '01-25-2019', '11-01-2018', '07-26-2018', '04-26-2018', '01-25-2018', '11-02-2017', '07-27-2017', '04-27-2017']], 'ULTA': [['11-03-2020', '08-27-2020', '05-29-2020', '10-13-2020', '11-05-2019', '08-29-2019', '05-31-2019', '10-14-2019', '11-06-2018', '08-30-2018', '05-31-2018', '10-15-2018']], 'VIPS': [['11-11-2020', '08-12-2020', '05-20-2020', '02-19-2020', '11-13-2019', '08-14-2019', '05-22-2019', '02-21-2019', '11-15-2018', '08-13-2018', '05-14-2018', '02-12-2018', '11-20-2017', '08-16-2017', '05-15-2017', '02-20-2017']], 'WING': [['10-28-2020', '07-30-2020', '05-05-2020', '02-25-2020', '10-30-2019', '08-01-2019', '05-07-2019', '02-27-2019', '10-29-2018', '08-02-2018', '05-03-2018', '02-22-2018', '11-02-2017', '08-03-2017', '05-04-2017', '10-02-2017']], 'YUM': [['10-28-2020', '07-30-2020', '04-29-2020', '02-05-2020', '10-30-2019', '08-01-2019', '05-01-2019', '02-07-2019', '10-31-2018', '08-02-2018', '05-02-2018', '02-08-2018', '11-02-2017', '08-03-2017', '05-03-2017', '02-09-2017']], 'YUMC': [['10-27-2020', '07-28-2020', '04-27-2020', '01-29-2020', '10-29-2019', '07-30-2019', '04-29-2019', '01-31-2019', '10-30-2018', '08-01-2018', '05-01-2018', '02-05-2018', '04-05-2017', '02-07-2017']]}