Overall Statistics |
Total Trades 9997 Average Win 0.18% Average Loss -0.17% Compounding Annual Return 13.788% Drawdown 28.200% Expectancy 0.102 Net Profit 140.349% Sharpe Ratio 0.705 Probabilistic Sharpe Ratio 16.822% Loss Rate 45% Win Rate 55% Profit-Loss Ratio 1.02 Alpha 0.135 Beta -0.021 Annual Standard Deviation 0.187 Annual Variance 0.035 Information Ratio -0.003 Tracking Error 0.239 Treynor Ratio -6.253 Total Fees $27624.85 |
# https://quantpedia.com/Screener/Details/14 class MomentumEffectAlgorithm(QCAlgorithm): def Initialize(self): self.SetStartDate(2009, 7, 1) # Set Start Date self.SetEndDate(2019, 7, 1) # Set Start Date self.SetCash(100000) # Set Strategy Cash self.UniverseSettings.Resolution = Resolution.Daily self.mom = {} # Dict of Momentum indicator keyed by Symbol self.lookback = 252 # Momentum indicator lookback period self.num_coarse = 100 # Number of symbols selected at Coarse Selection self.num_fine = 50 # Number of symbols selected at Fine Selection self.num_long = 5 # Number of symbols with open positions self.month = -1 self.rebalance = False self.AddUniverse(self.CoarseSelectionFunction, self.FineSelectionFunction) def CoarseSelectionFunction(self, coarse): '''Drop securities which have no fundamental data or have too low prices. Select those with highest by dollar volume''' '''if self.month == self.Time.month: return Universe.Unchanged ''' self.rebalance = True #self.month = self.Time.month selected = sorted([x for x in coarse if x.HasFundamentalData and x.Price > 5 and x.Price<50], key=lambda x: x.DollarVolume, reverse=True) return [x.Symbol for x in selected[:self.num_coarse]] def FineSelectionFunction(self, fine): '''Select security with highest market cap''' fine = [f for f in fine if f.ValuationRatios.PERatio > 0 and f.EarningReports.BasicEPS.TwelveMonths > 0 and f.EarningReports.BasicAverageShares.ThreeMonths > 0] selected = sorted(fine, key=lambda f: f.ValuationRatios.PERatio * f.EarningReports.BasicEPS.TwelveMonths * f.EarningReports.BasicAverageShares.ThreeMonths, reverse=True) return [x.Symbol for x in selected[:self.num_fine]] def OnData(self, data): # Update the indicator for symbol, mom in self.mom.items(): mom.Update(self.Time, self.Securities[symbol].Close) if not self.rebalance: return # Selects the securities with highest momentum sorted_mom = sorted([k for k,v in self.mom.items() if v.IsReady], key=lambda x: self.mom[x].Current.Value, reverse=True) selected = sorted_mom[:self.num_long] # Liquidate securities that are not in the list for symbol, mom in self.mom.items(): if symbol not in selected: self.Liquidate(symbol, 'Not selected') # Buy selected securities for symbol in selected: self.SetHoldings(symbol, 1/self.num_long) self.rebalance = False def OnSecuritiesChanged(self, changes): # Clean up data for removed securities and Liquidate for security in changes.RemovedSecurities: symbol = security.Symbol if self.mom.pop(symbol, None) is not None: self.Liquidate(symbol, 'Removed from universe') for security in changes.AddedSecurities: if security.Symbol not in self.mom: self.mom[security.Symbol] = Momentum(self.lookback) # Warm up the indicator with history price if it is not ready addedSymbols = [k for k,v in self.mom.items() if not v.IsReady] history = self.History(addedSymbols, 1 + self.lookback, Resolution.Daily) history = history.close.unstack(level=0) for symbol in addedSymbols: ticker = str(symbol) if ticker in history: for time, value in history[ticker].items(): item = IndicatorDataPoint(symbol, time, value) self.mom[symbol].Update(item)