Overall Statistics |
Total Trades 1 Average Win 0% Average Loss 0% Compounding Annual Return 8.602% Drawdown 18.800% Expectancy 0 Net Profit 25.027% Sharpe Ratio 0.561 Loss Rate 0% Win Rate 0% Profit-Loss Ratio 0 Alpha 0.206 Beta -5.431 Annual Standard Deviation 0.174 Annual Variance 0.03 Information Ratio 0.446 Tracking Error 0.174 Treynor Ratio -0.018 Total Fees $17.30 |
from QuantConnect.Indicators import * class BasicTemplateAlgorithm(QCAlgorithm): '''Basic template algorithm simply initializes the date range and cash''' def Initialize(self): '''Initialise the data and resolution required, as well as the cash and start-end dates for your algorithm. All algorithms must initialized.''' self.SetStartDate(2015,9,1) #Set Start Date self.SetEndDate(2018,5,15) #Set End Date self.SetCash(100000) #Set Strategy Cash # Find more symbols here: http://quantconnect.com/data self.AddEquity("PFE", Resolution.Daily) self.Strength = self.RSI("PFE",14,MovingAverageType.Simple,Resolution.Daily) self.SetWarmUp(20) self.SetBenchmark("SPY") def OnData(self, data): rsi = self.Strength.Current.Value current = data["PFE"].Close #need to check when to go long if not self.Portfolio.Invested: if rsi < 40: self.SetHoldings("PFE", 1) self.current = self.Time if self.Portfolio.Invested: if (self.Time - self.current).days == 5: self.Liquidate("PFE")