Overall Statistics |
Total Trades 28 Average Win 17.86% Average Loss -4.21% Compounding Annual Return 16.154% Drawdown 24.900% Expectancy 3.440 Net Profit 656.280% Sharpe Ratio 1.011 Probabilistic Sharpe Ratio 39.996% Loss Rate 15% Win Rate 85% Profit-Loss Ratio 4.25 Alpha 0.145 Beta 0.25 Annual Standard Deviation 0.175 Annual Variance 0.031 Information Ratio 0.222 Tracking Error 0.226 Treynor Ratio 0.706 Total Fees $429.44 Estimated Strategy Capacity $4900000.00 Lowest Capacity Asset XLB RGRPZX100F39 |
## SIMON LesFlex June 2021 ## ## Modified by Vladimir from QuantConnect.Python import PythonQuandl ### Simon LesFlex June 2021 ### ### Key Short—Term Economic Indicators. The Key Economic Indicators (KEI) database contains monthly and quarterly statistics ### (and associated statistical methodological information) for the 33 OECD member and for a selection of non—member countries ### on a wide variety of economic indicators, namely: quarterly national accounts, industrial production, composite leading indicators, ### business tendency and consumer opinion surveys, retail trade, consumer and producer prices, hourly earnings, employment/unemployment, ### interest rates, monetary aggregates, exchange rates, international trade and balance of payments. Indicators have been prepared by national statistical ### agencies primarily to meet the requirements of users within their own country. In most instances, the indicators are compiled in accordance with ### international statistical guidelines and recommendations. However, national practices may depart from these guidelines, and these departures may ### impact on comparability between countries. There is an on—going process of review and revision of the contents of the database in order to maximise ### the relevance of the database for short—term economic analysis. ### For more information see: http://stats.oecd.org/OECDStat_Metadata/ShowMetadata.ashx?Dataset=KEI&Lang=en ### Reference Data Set: https://www.quandl.com/data/OECD/KEI_LOLITOAA_OECDE_ST_M-Leading-indicator-amplitude-adjusted-OECD-Europe-Level-ratio-or-index-Monthly import numpy as np class QuandlImporterAlgorithm(QCAlgorithm): def Initialize(self): self.quandlCode = "OECD/KEI_LOLITOAA_OECDE_ST_M" ## Optional argument - personal token necessary for restricted dataset Quandl.SetAuthCode("MLNarxdsMU92vk-ZJDvg") self.SetStartDate(2008,1,1) #Set Start Date self.SetEndDate(datetime.today() - timedelta(1)) #Set End Date self.SetCash(100000) #Set Strategy Cash self.SetWarmup(100) self.SetBenchmark("SPY") self.init = True self.kei = self.AddData(QuandlCustomColumns, self.quandlCode, Resolution.Daily, TimeZones.NewYork).Symbol self.sma = self.SMA(self.kei, 1) self.mom = self.MOMP(self.kei, 2) #self.SPY = self.AddEquity('SPY', Resolution.Daily).Symbol self.stock = self.AddEquity('QQQ', Resolution.Hour).Symbol self.bond = self.AddEquity('TLT', Resolution.Hour).Symbol self.XLF = self.AddEquity('XLF', Resolution.Hour).Symbol self.XLE = self.AddEquity('XLE', Resolution.Hour).Symbol self.XLB = self.AddEquity('XLB', Resolution.Hour).Symbol self.XLI = self.AddEquity('XLI', Resolution.Hour).Symbol self.XLY = self.AddEquity('XLY', Resolution.Hour).Symbol self.XLP = self.AddEquity('XLP', Resolution.Hour).Symbol self.XLU = self.AddEquity('XLU', Resolution.Hour).Symbol self.XLK = self.AddEquity('XLK', Resolution.Hour).Symbol self.XLV = self.AddEquity('XLV', Resolution.Hour).Symbol self.XLC = self.AddEquity('XLC', Resolution.Hour).Symbol self.Schedule.On(self.DateRules.WeekStart(self.stock), self.TimeRules.AfterMarketOpen(self.stock, 31), self.Rebalance) def Rebalance(self): if self.IsWarmingUp or not self.mom.IsReady or not self.sma.IsReady: return initial_asset = self.stock if self.mom.Current.Value > 0 else self.bond if self.init: self.SetHoldings(initial_asset, 1) self.init = False #keihist = self.History([self.kei], 1400) keihist = self.History([self.kei],self.StartDate-timedelta(100),self.StartDate-timedelta(10)) #keihist = keihist['Value'].unstack(level=0).dropna() keihistlowt = np.nanpercentile(keihist, 15) keihistmidt = np.nanpercentile(keihist, 50) keihisthight = np.nanpercentile(keihist, 90) kei = self.sma.Current.Value keimom = self.mom.Current.Value if (keimom < 0 and kei < keihistmidt and kei > keihistlowt) and not (self.Securities[self.bond].Invested): # DECLINE self.Liquidate() #self.SetHoldings(self.XLP, 1) self.SetHoldings(self.bond, 1) self.Debug("STAPLES {0} >> {1}".format(self.XLP, self.Time)) elif (keimom > 0 and kei < keihistlowt) and not (self.Securities[self.XLB].Invested): # RECOVERY self.Liquidate() self.SetHoldings(self.XLB, .5) self.SetHoldings(self.XLY, .5) self.Debug("MATERIALS {0} >> {1}".format(self.XLB, self.Time)) elif (keimom > 0 and kei > keihistlowt and kei < keihistmidt) and not (self.Securities[self.XLE].Invested): # EARLY self.Liquidate() self.SetHoldings(self.XLE, .33) self.SetHoldings(self.XLF, .33) self.SetHoldings(self.XLI, .33) self.Debug("ENERGY {0} >> {1}".format(self.XLE, self.Time)) elif (keimom > 0 and kei > keihistmidt and kei < keihisthight) and not (self.Securities[self.XLU].Invested): # REBOUND self.Liquidate() self.SetHoldings(self.XLK, .5) self.SetHoldings(self.XLU, .5) self.Debug("UTILITIES {0} >> {1}".format(self.XLU, self.Time)) elif (keimom < 0 and kei < keihisthight and kei > keihistmidt) and not (self.Securities[self.XLK].Invested): # LATE self.Liquidate() self.SetHoldings(self.XLK, .5) self.SetHoldings(self.XLV, .5) self.Debug("INFO TECH {0} >> {1}".format(self.XLK, self.Time)) elif (keimom < 0 and kei < 100 and not self.Securities[self.bond].Invested): self.Liquidate() self.SetHoldings(self.bond, 1) self.Plot("LeadInd", "SMA(LeadInd)", self.sma.Current.Value) self.Plot("LeadInd", "THRESHOLD", 100) self.Plot("MOMP", "MOMP(LeadInd)", self.mom.Current.Value) self.Plot("MOMP", "THRESHOLD", 0) # Quandl often doesn't use close columns so need to tell LEAN which is the "value" column. class QuandlCustomColumns(PythonQuandl): def __init__(self): # Define ValueColumnName: cannot be None, Empty or non-existant column name self.ValueColumnName = "Value"