Overall Statistics
Total Trades
0
Average Win
0%
Average Loss
0%
Compounding Annual Return
0%
Drawdown
0%
Expectancy
0
Net Profit
0%
Sharpe Ratio
0
Probabilistic Sharpe Ratio
0%
Loss Rate
0%
Win Rate
0%
Profit-Loss Ratio
0
Alpha
0
Beta
0
Annual Standard Deviation
0
Annual Variance
0
Information Ratio
0
Tracking Error
0
Treynor Ratio
0
Total Fees
$0.00
from clr import AddReference
AddReference("QuantConnect.Algorithm.Framework")
from QuantConnect.Algorithm.Framework.Execution import ExecutionModel

# Execution Model scaffolding structure example
class StopLossAndProfitTargetExecutionModel(ExecutionModel):

    # Fill the supplied portfolio targets efficiently
    def Execute(self, algorithm, targets):
        pass

    # Optional: Securities changes event for handling new securities.
    def OnSecuritiesChanged(self, algorithm, changes):
        pass
from Alphas.EmaCrossAlphaModel import EmaCrossAlphaModel
from Execution.StandardDeviationExecutionModel import StandardDeviationExecutionModel
from G10CurrencySelectionModel import G10CurrencySelectionModel
from MultiTimeFrameEmaAlphaModel import MultiTimeFrameEmaAlphaModel
from StopLossAndProfitTargetExecutionModel import StopLossAndProfitTargetExecutionModel
from ForexPortfolioConstructionModel import ForexPortfolioConstructionModel

class MultiTimeFrameForexScalping(QCAlgorithm):

    def Initialize(self):
        self.SetStartDate(2019, 9, 10)  # Set Start Date
        self.SetEndDate(2019, 10 ,10)
        self.SetCash(100000)  # Set Strategy Cash
    
        
        self.AddUniverseSelection(G10CurrencySelectionModel())
        
        self.AddAlpha(MultiTimeFrameEmaAlphaModel())
        
        self.SetPortfolioConstruction(ForexPortfolioConstructionModel())
        
        self.SetExecution(StopLossAndProfitTargetExecutionModel())


    def OnData(self, data):
        '''OnData event is the primary entry point for your algorithm. Each new data point will be pumped in here.
            Arguments:
                data: Slice object keyed by symbol containing the stock data
        '''

        # if not self.Portfolio.Invested:
        #    self.SetHoldings("SPY", 1)
from QuantConnect import *
from Selection.ManualUniverseSelectionModel import ManualUniverseSelectionModel

class G10CurrencySelectionModel(ManualUniverseSelectionModel):
    def __init__(self):
        super().__init__([Symbol.Create(x, SecurityType.Forex, Market.Oanda) for x in [ "EURUSD", "GBPUSD", "USDJPY", "AUDUSD", "NZDUSD","USDCAD", "USDCHF", "USDNOK", "USDSEK"]])
# Your New Python File
# QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals.
# Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from clr import AddReference
AddReference("QuantConnect.Common")
AddReference("QuantConnect.Algorithm")
AddReference("QuantConnect.Algorithm.Framework")
AddReference("QuantConnect.Indicators")

from QuantConnect import *
from QuantConnect.Indicators import *
from QuantConnect.Algorithm import *
from QuantConnect.Algorithm.Framework import *
from QuantConnect.Algorithm.Framework.Alphas import *


class MultiTimeFrameEmaAlphaModel(AlphaModel):
    '''Alpha model that uses an EMA cross to create insights'''

    def __init__(self,
                 barHistoryWindow = 5,
                 longLookBackPeriod = 21,
                 mediumLookBackPeriod = 13,
                 shortLookBackPeriod = 8):
        self.barHistoryWindow = barHistoryWindow
        self.longLookBackPeriod = longLookBackPeriod
        self.mediumLookBackPeriod = mediumLookBackPeriod
        self.shortLookBackPeriod = shortLookBackPeriod
        self.symbolDataBySymbol = {}
        
       
    def Update(self, algorithm, data):
        insights = []
        
        for symbol, symbolData in self.symbolDataBySymbol.items():
            if symbolData.IsReady and symbolData.longEntrySetup and symbolData.longEntryTrigger:
                insights += [Insight.Price(symbol, timedelta(hours = 4), InsightDirection.Up)]
        
        return insights
    
    def OnSecuritiesChanged(self, algorithm, changes):
        
        for security in changes.AddedSecurities:
            symbol = security.Symbol
            if symbol not in self.symbolDataBySymbol:
                self.symbolDataBySymbol[symbol] = SymbolData(algorithm, symbol, self.barHistoryWindow, self.longLookBackPeriod, self.mediumLookBackPeriod, self.shortLookBackPeriod)
        
        for security in changes.RemovedSecurities:
            symbol = security.Symbol
            if symbol not in self.symbolDataBySymbol:
                symbolData = self.symbolDataBySymbol.pop(symbol, None)
                if symbolData != None:
                    algorithm.SubscriptionManager.RemoveConsolidator(symbol, symbolData.fiveMinutesConsolidate)
                    algorithm.SubscriptionManager.RemoveConsolidator(symbol, symbolData.sixtyMinutesConsolidate)
                
class SymbolData:
    '''Contains data specific to a symbol required by this model'''
    def __init__(self, algorithm, symbol, barHistoryWindow, longLookBackPeriod, mediumLookBackPeriod, shortLookBackPeriod):
        self.algorithm = algorithm
        self.symbol = symbol
        self.barHistoryWindow = barHistoryWindow
        self.longLookBackPeriod = longLookBackPeriod
        self.mediumLookBackPeriod = mediumLookBackPeriod
        self.shortLookBackPeriod = shortLookBackPeriod
        
        self.fiveMinutesConsolidator = QuoteBarConsolidator(timedelta(minutes=5))
        self.sixtyMinutesConsolidator = QuoteBarConsolidator(timedelta(minutes=5))
        
        self.fiveMinutesConsolidator.DataConsolidated += self.fiveMinutesBarHandler
        self.sixtyMinutesConsolidator.DataConsolidated += self.sixtyMinutesBarHandler
        
        self.algorithm.SubscriptionManager.AddConsolidator(self.symbol, self.fiveMinutesConsolidator)
        self.algorithm.SubscriptionManager.AddConsolidator(self.symbol, self.sixtyMinutesConsolidator)
        
        self.emaFiveMinsLong = ExponentialMovingAverage(self.longLookBackPeriod)
        self.emaFiveMinsMedium = ExponentialMovingAverage(self.mediumLookBackPeriod)
        self.emaFiveMinsShort = ExponentialMovingAverage(self.shortLookBackPeriod)
        
        self.algorithm.RegisterIndicator(self.symbol, self.emaFiveMinsLong, self.fiveMinutesConsolidator)
        self.algorithm.RegisterIndicator(self.symbol, self.emaFiveMinsMedium, self.fiveMinutesConsolidator)
        self.algorithm.RegisterIndicator(self.symbol, self.emaFiveMinsShort, self.fiveMinutesConsolidator)
        
        self.emaSixtyMinsLong = ExponentialMovingAverage(self.longLookBackPeriod)
        self.emaSixtyMinsShort = ExponentialMovingAverage(self.shortLookBackPeriod)
        
        self.algorithm.RegisterIndicator(self.symbol, self.emaSixtyMinsLong, self.sixtyMinutesConsolidator)
        self.algorithm.RegisterIndicator(self.symbol, self.emaSixtyMinsShort, self.sixtyMinutesConsolidator)
        
        self.historyFiveMinuteBars = RollingWindow[QuoteBar](self.barHistoryWindow)
        self.historySixtyMinuteBars = RollingWindow[QuoteBar](self.barHistoryWindow)
        self.historyEmaSixtyMinsLong = RollingWindow[float](self.barHistoryWindow)
        self.historyEmaSixtyMinsShort = RollingWindow[float](self.barHistoryWindow)
        self.historyEmaFiveMinsLong = RollingWindow[float](self.barHistoryWindow)
        self.historyEmaFiveMinsMedium = RollingWindow[float](self.barHistoryWindow)
        self.historyEmaFiveMinsShort = RollingWindow[float](self.barHistoryWindow)
        
        self.emaFiveMinsLong.Updated += self.onEmaFiveMinsLong
        self.emaFiveMinsMedium.Updated +=  self.onEmaFiveMinsMedium
        self.emaFiveMinsShort.Updated += self.onEmaFiveMinsShort
        self.emaSixtyMinsLong.Updated += self.onEmaSixtyMinsLong
        self.emaSixtyMinsShort.Updated += self.onEmaSixtyMinsShort
    
    @property
    def longEntrySetup(self):
        fiveMinFannedOut =   all([x > y > z for x,y,z in zip(list(self.historyEmaFiveMinsShort),list(self.historyEmaFiveMinsMedium),list(self.historyEmaFiveMinsLong))])
        sixtyMinFannedOut =  all([x > y for x,y in zip(list(self.historyEmaSixtyMinsShort),list(self.historyEmaSixtyMinsLong))])
        prevBarsAboveShortEMA = all([x > y for x,y in zip([bar.Low for bar in list(self.historyFiveMinuteBars)[0:4]],list(self.historyEmaFiveMinsShort)[:4])])
        return fiveMinFannedOut and sixtyMinFannedOut and prevBarsAboveShortEMA
    
    @property
    def longEntryTrigger(self):
        return self.historyFiveMinuteBars[4].Low <= self.historyEmaFiveMinsShort[4]
        
    @property
    def IsReady(self):
        return self.historyFiveMinuteBars.IsReady and \
        self.historySixtyMinuteBars.IsReady and \
        self.historyEmaSixtyMinsLong.IsReady and \
        self.historyEmaSixtyMinsShort.IsReady and \
        self.historyEmaFiveMinsLong.IsReady and \
        self.historyEmaFiveMinsMedium.IsReady and \
        self.historyEmaFiveMinsShort.IsReady
        
         
    def sixtyMinutesBarHandler(self, sender, consolidated):
        self.historySixtyMinuteBars.Add(consolidated)
        self.algorithm.Plot("60m","EURUSD", consolidated.Close)
        
    def fiveMinutesBarHandler(self, sender, consolidated):
        self.historyFiveMinuteBars.Add(consolidated)
        self.algorithm.Plot("5m","EURUSD", consolidated.Close)
        
    def onEmaFiveMinsLong(self, sender, updated):
        if self.emaFiveMinsLong.IsReady:
            self.historyEmaFiveMinsLong.Add(updated.Value)
            self.algorithm.Plot("5m","5mEMA21",self.emaFiveMinsLong.Current.Value)
        
    def onEmaFiveMinsMedium(self, sender, updated):
        if self.emaFiveMinsMedium.IsReady:
            self.historyEmaFiveMinsMedium.Add(updated.Value)
            self.algorithm.Plot("5m","5mEMA13", self.emaFiveMinsMedium.Current.Value)
            
    def onEmaFiveMinsShort(self, sender, updated):
        if self.emaFiveMinsShort.IsReady:
            self.historyEmaFiveMinsShort.Add(updated.Value)
            self.algorithm.Plot("5m","5mEMA8", self.emaFiveMinsShort.Current.Value)
        
    def onEmaSixtyMinsLong(self, sender, updated):
        if self.emaSixtyMinsLong.IsReady:
            self.historyEmaSixtyMinsLong.Add(updated.Value)
            self.algorithm.Plot("60m","EMA21",self.emaSixtyMinsLong.Current.Value)
        
    def onEmaSixtyMinsShort(self, sender, updated):
        if self.emaSixtyMinsShort.IsReady:
            self.historyEmaSixtyMinsShort.Add(updated.Value)
            self.algorithm.Plot("60m","EMA8", self.emaSixtyMinsShort.Current.Value)
# Portfolio construction scaffolding class; basic method args.
class ForexPortfolioConstructionModel(PortfolioConstructionModel):

      # Create list of PortfolioTarget objects from Insights
      def CreateTargets(self, algorithm, insights):
            targets = []
            return targets

      # OPTIONAL: Security change details
      def OnSecuritiesChanged(self, algorithm, changes):
            # Security additions and removals are pushed here.
            # This can be used for setting up algorithm state.
            # changes.AddedSecurities:
            # changes.RemovedSecurities:
            pass