Overall Statistics |
Total Trades 0 Average Win 0% Average Loss 0% Compounding Annual Return 0% Drawdown 0% Expectancy 0 Net Profit 0% Sharpe Ratio 0 Probabilistic Sharpe Ratio 0% Loss Rate 0% Win Rate 0% Profit-Loss Ratio 0 Alpha 0 Beta 0 Annual Standard Deviation 0 Annual Variance 0 Information Ratio -0.668 Tracking Error 0.303 Treynor Ratio 0 Total Fees $0.00 Estimated Strategy Capacity $0 |
from System import * from QuantConnect import * from QuantConnect.Data.Consolidators import * from QuantConnect.Data.Market import * from QuantConnect.Orders import OrderStatus from QuantConnect.Algorithm import QCAlgorithm from QuantConnect.Indicators import * import numpy as np from datetime import timedelta, datetime class MultipleSymbolMultipleIndicatorDatapoint(QCAlgorithm): def Initialize(self): RollingWindowSize = 2 # How many bars worth of data do you need? self.Data = {} # The dictionary to use EquitySymbols = ["AAPL","SPY","IBM"] # As many as you like. This can also work with a QC Universe # Date bookends self.SetStartDate(2020, 1, 1) self.SetEndDate(2020, 12, 31) self.SetWarmup(30) # initialize our equity data for symbol in EquitySymbols: equity = self.AddEquity(symbol, Resolution.Daily) self.Data[symbol] = SymbolData(equity.Symbol, RollingWindowSize) # See SymbolData class below # loop through all our symbols and request data subscriptions and initialize indicator for symbol, symbolData in self.Data.items(): # define the indicator symbolData.MACD = MovingAverageConvergenceDivergence("MACD", 12, 26, 9, Resolution.Daily) # define a consolidator to consolidate data for this symbol on the requested period consolidator = TradeBarConsolidator(1) # Only need one day in the bar, but this could be any size # write up our consolidator to update the indicator consolidator.DataConsolidated += self.OnDataConsolidated # we need to add this consolidator so it gets auto updates self.SubscriptionManager.AddConsolidator(symbolData.Symbol, consolidator) def OnDataConsolidated(self, sender, bar): if not SymbolData.IsReady: return # Don't bother if there's no data yet self.Data[bar.Symbol.Value].MACD.Update(bar.Time, bar.Close) # This updates the MACD indicator self.Data[bar.Symbol.Value].Bars.Add(bar) # This updates the ticker data in its rolling window def OnData(self,data): # loop through each symbol in our structure for symbol in self.Data.keys(): symbolData = self.Data[symbol] if symbolData.IsReady(): ## All data points for the MACD are accessible through symbolData self.Debug(str(symbol) + str(" slow MACD: ") + str(symbolData.MACD.Slow.Current.Value)) # See console for Debug messages self.Debug(str(symbol) + str(" fast MACD: ") + str(symbolData.MACD.Fast.Current.Value)) macd_signal = symbolData.MACD.Signal.Current.Value # This is just one of the MACD indicator data points # The rolling window was declared in SymbolData class, # now we save the datapoint we need to the rolling window. # Remember, this is happening for every stock in our list self.Data[symbol].MACDSignal.Add(macd_signal) # And now we can reference the window index latestMACDSignalValue = symbolData.MACDSignal[0] self.Debug(str(symbol) + str(" latest MACD signal value is: ") + str(latestMACDSignalValue)) class SymbolData(object): def __init__(self, symbol, windowSize): self.Symbol = symbol self.Bars = RollingWindow[IBaseDataBar](windowSize) # The MACD indicator for our symbol self.MACDSignal = RollingWindow[float](windowSize) # There may be a better way to do this, but this works # Returns true if all the data in this instance is ready (indicators, rolling windows, ect...) def IsReady(self): return self.Bars.IsReady and self.MACD.IsReady