Overall Statistics |
Total Trades 2902 Average Win 0.75% Average Loss -0.54% Compounding Annual Return 26.943% Drawdown 32.900% Expectancy 0.416 Net Profit 2224.302% Sharpe Ratio 1.07 Probabilistic Sharpe Ratio 42.897% Loss Rate 41% Win Rate 59% Profit-Loss Ratio 1.40 Alpha 0 Beta 0 Annual Standard Deviation 0.234 Annual Variance 0.055 Information Ratio 1.07 Tracking Error 0.234 Treynor Ratio 0 Total Fees $4327.81 Estimated Strategy Capacity $8900.00 |
from QuantConnect.Data.UniverseSelection import * import math import numpy as np import pandas as pd import scipy as sp class QualUp_inout(QCAlgorithm): def Initialize(self): self.SetStartDate(2008, 1, 1) # Set Start Date #self.SetEndDate(2021,1,1) self.cap=20000 # Set Strategy Cash self.SetCash(self.cap) res = Resolution.Hour self.SetBrokerageModel(BrokerageName.InteractiveBrokersBrokerage) # Defaults to margin account # Holdings ### 'Out' holdings and weights self.BND1 = self.AddEquity('TLT', res).Symbol #TLT; TMF for 3xlev self.quantity = {self.BND1: 0} # Choose in & out algo self.go_inout_vs_dbear = 1 # 1=In&Out, 0=DistilledBear ##### In & Out parameters ##### # Feed-in constants self.INI_WAIT_DAYS = 15 # out for 3 trading weeks self.wait_days = self.INI_WAIT_DAYS # Market and list of signals based on ETFs self.MRKT = self.AddEquity('SPY', res).Symbol # market self.PRDC = self.AddEquity('XLI', res).Symbol # production (industrials) self.METL = self.AddEquity('DBB', res).Symbol # input prices (metals) self.NRES = self.AddEquity('IGE', res).Symbol # input prices (natural res) self.DEBT = self.AddEquity('SHY', res).Symbol # cost of debt (bond yield) self.USDX = self.AddEquity('UUP', res).Symbol # safe haven (USD) self.GOLD = self.AddEquity('GLD', res).Symbol # gold self.SLVA = self.AddEquity('SLV', res).Symbol # vs silver #self.INFL = self.AddEquity('RINF', res).Symbol # disambiguate GPLD/SLVA pair via inflaction expectations self.TIPS = self.AddEquity('TIP', res).Symbol # disambiguate GPLD/SLVA pair via inflaction expectations; Treasury Yield = TIPS Yield + Expected Inflation self.UTIL = self.AddEquity('XLU', res).Symbol # utilities self.INDU = self.PRDC # vs industrials self.SHCU = self.AddEquity('FXF', res).Symbol # safe haven currency (CHF) self.RICU = self.AddEquity('FXA', res).Symbol # vs risk currency (AUD) self.FORPAIRS = [self.GOLD, self.SLVA, self.UTIL, self.SHCU, self.RICU, self.TIPS] #self.INFL self.SIGNALS = [self.PRDC, self.METL, self.NRES, self.DEBT, self.USDX] self.pairlist = ['G_S', 'U_I', 'C_A'] # Initialize variables ## 'In'/'out' indicator self.be_in = 1 #-1 #initially, set to an arbitrary value different from 1 (in) and 0 (out) self.be_in_prior = 0 #-1 #initially, set to an arbitrary value different from 1 (in) and 0 (out) ## Day count variables self.dcount = 0 # count of total days since start self.outday = (-self.INI_WAIT_DAYS+1) # setting ensures universe updating at algo start ## Flexi wait days self.WDadjvar = self.INI_WAIT_DAYS self.adjwaitdays = self.INI_WAIT_DAYS ## For inflation gauge self.debt1st = [] self.tips1st = [] ##### Distilled Bear parameters (note: some signals shared with In & Out) ##### self.DISTILLED_BEAR = 1 #-1 self.VOLA_LOOKBACK = 126 self.WAITD_CONSTANT = 85 # set a warm-up period to initialize the indicator self.SetWarmUp(timedelta(350)) ##### Valuation Rockets parameters ##### self.UniverseSettings.Resolution = res self.AddUniverse(self.UniverseCoarseFilter, self.UniverseFundamentalsFilter) self.num_coarse = 500 #number of coarse symbol self.num_screener = 250 #number of fine symbol self.num_stocks = 20 self.formation_days = 126 #during which we load our parameter, it's half a trading year self.lowmom = False self.data = {} self.setrebalancefreq = 30 # X days, update universe and momentum calculation, original value 30 self.updatefinefilter = 0 self.symbols = None self.reb_count = 0 # original 0 self.Schedule.On( self.DateRules.EveryDay(), self.TimeRules.AfterMarketOpen('SPY', 30), self.rebalance_when_out_of_the_market) self.Schedule.On( self.DateRules.EveryDay(), self.TimeRules.BeforeMarketClose('SPY', 0), self.record_vars) # Benchmarks self.QQQ = self.AddEquity('QQQ', res).Symbol self.benchmarks = [] self.year = self.Time.year #for resetting benchmarks annually if applicable # Setup daily consolidation symbols = [self.MRKT] + self.SIGNALS + self.FORPAIRS + [self.QQQ] for symbol in symbols: self.consolidator = TradeBarConsolidator(timedelta(days=1)) self.consolidator.DataConsolidated += self.consolidation_handler self.SubscriptionManager.AddConsolidator(symbol, self.consolidator) # Warm up history if self.go_inout_vs_dbear==1: self.lookback = 252 #full year, not a parameter if self.go_inout_vs_dbear==0: self.lookback = 126 #half year, not a para self.history = self.History(symbols, self.lookback, Resolution.Daily) if self.history.empty or 'close' not in self.history.columns: return self.history = self.history['close'].unstack(level=0).dropna() def UniverseCoarseFilter(self, coarse): if not (((self.dcount-self.reb_count)==self.setrebalancefreq) or (self.dcount == self.outday + self.adjwaitdays - 1)): self.updatefinefilter = 0 return Universe.Unchanged self.updatefinefilter = 1 # drop stocks which have no fundamental data or have too low prices selected = [x for x in coarse if (x.HasFundamentalData) and (float(x.Price) > 5)] # rank the stocks by dollar volume filtered = sorted(selected, key=lambda x: x.DollarVolume, reverse=True) return [x.Symbol for x in filtered[:self.num_coarse]] def UniverseFundamentalsFilter(self, fundamental): if self.updatefinefilter == 0: return Universe.Unchanged rank_cash_return = sorted(fundamental, key=lambda x: x.ValuationRatios.CashReturn, reverse=True) rank_fcf_yield = sorted(fundamental, key=lambda x: x.ValuationRatios.FCFYield, reverse=True) rank_roic = sorted(fundamental, key=lambda x: x.OperationRatios.ROIC.Value, reverse=True) rank_ltd_to_eq = sorted(fundamental, key=lambda x: x.OperationRatios.LongTermDebtEquityRatio.Value, reverse=True) combo_rank = {} for i,ele in enumerate(rank_cash_return): rank1 = i rank2 = rank_fcf_yield.index(ele) score = sum([rank1*0.5,rank2*0.5]) combo_rank[ele] = score rank_value = dict(sorted(combo_rank.items(), key=lambda item:item[1], reverse=False)) stock_dict = {} # assign a score to each stock, you can also change the rule of scoring here. for i,ele in enumerate(rank_roic): rank1 = i rank2 = rank_ltd_to_eq.index(ele) rank3 = list(rank_value.keys()).index(ele) score = sum([rank1*0.33,rank2*0.33,rank3*0.33]) stock_dict[ele] = score # sort the stocks by their scores self.sorted_stock = sorted(stock_dict.items(), key=lambda d:d[1],reverse=True) self.sorted_symbol = [self.sorted_stock[i][0] for i in range(len(self.sorted_stock))] top= self.sorted_symbol[:self.num_screener] self.symbols = [x.Symbol for x in top] #self.Log("100 fine-filtered stocks\n" + str(sorted([str(i.Value) for i in self.symbols]))) self.updatefinefilter = 0 self.reb_count = self.dcount return self.symbols def OnSecuritiesChanged(self, changes): addedSymbols = [] for security in changes.AddedSecurities: addedSymbols.append(security.Symbol) if security.Symbol not in self.data: self.data[security.Symbol] = SymbolData(security.Symbol, self.formation_days, self) if len(addedSymbols) > 0: history = self.History(addedSymbols, 1 + self.formation_days, Resolution.Daily).loc[addedSymbols] for symbol in addedSymbols: try: self.data[symbol].Warmup(history.loc[symbol]) except: self.Debug(str(symbol)) continue def consolidation_handler(self, sender, consolidated): self.history.loc[consolidated.EndTime, consolidated.Symbol] = consolidated.Close self.history = self.history.iloc[-self.lookback:] if self.go_inout_vs_dbear==1: self.update_history_shift() def update_history_shift(self): self.history_shift = self.history.rolling(11, center=True).mean().shift(60) def derive_vola_waitdays(self): volatility = 0.6 * np.log1p(self.history[[self.MRKT]].pct_change()).std() * np.sqrt(252) wait_days = int(volatility * self.WAITD_CONSTANT) returns_lookback = int((1.0 - volatility) * self.WAITD_CONSTANT) return wait_days, returns_lookback def signalcheck_inout(self): ##### In & Out signal check logic ##### # Returns sample to detect extreme observations returns_sample = (self.history / self.history_shift - 1) # Reverse code USDX: sort largest changes to bottom returns_sample[self.USDX] = returns_sample[self.USDX] * (-1) # For pairs, take returns differential, reverse coded returns_sample['G_S'] = -(returns_sample[self.GOLD] - returns_sample[self.SLVA]) returns_sample['U_I'] = -(returns_sample[self.UTIL] - returns_sample[self.INDU]) returns_sample['C_A'] = -(returns_sample[self.SHCU] - returns_sample[self.RICU]) # Extreme observations; statist. significance = 1% pctl_b = np.nanpercentile(returns_sample, 1, axis=0) extreme_b = returns_sample.iloc[-1] < pctl_b # Re-assess/disambiguate double-edged signals if self.dcount==0: self.debt1st = self.history[self.DEBT] self.tips1st = self.history[self.TIPS] self.history['INFL'] = (self.history[self.DEBT]/self.debt1st - self.history[self.TIPS]/self.tips1st) median = np.nanmedian(self.history, axis=0) abovemedian = self.history.iloc[-1] > median ### Interest rate expectations (cost of debt) may increase because the economic outlook improves (showing in rising input prices) = actually not a negative signal extreme_b.loc[[self.DEBT]] = np.where((extreme_b.loc[[self.DEBT]].any()) & (abovemedian[[self.METL, self.NRES]].any()), False, extreme_b.loc[[self.DEBT]]) ### GOLD/SLVA differential may increase due to inflation expectations which actually suggest an economic improvement = actually not a negative signal extreme_b.loc['G_S'] = np.where((extreme_b.loc[['G_S']].any()) & (abovemedian.loc[['INFL']].any()), False, extreme_b.loc['G_S']) # Determine waitdays empirically via safe haven excess returns, 50% decay self.WDadjvar = int( max(0.50 * self.WDadjvar, self.INI_WAIT_DAYS * max(1, np.where((returns_sample[self.GOLD].iloc[-1]>0) & (returns_sample[self.SLVA].iloc[-1]<0) & (returns_sample[self.SLVA].iloc[-2]>0), self.INI_WAIT_DAYS, 1), np.where((returns_sample[self.UTIL].iloc[-1]>0) & (returns_sample[self.INDU].iloc[-1]<0) & (returns_sample[self.INDU].iloc[-2]>0), self.INI_WAIT_DAYS, 1), np.where((returns_sample[self.SHCU].iloc[-1]>0) & (returns_sample[self.RICU].iloc[-1]<0) & (returns_sample[self.RICU].iloc[-2]>0), self.INI_WAIT_DAYS, 1) )) ) self.adjwaitdays = min(60, self.WDadjvar) return (extreme_b[self.SIGNALS + self.pairlist]).any() def signalcheck_dbear(self): ##### Distilled Bear signal check logic ##### self.adjwaitdays, returns_lookback = self.derive_vola_waitdays() ## Check for Bears returns = self.history.pct_change(returns_lookback).iloc[-1] silver_returns = returns[self.SLVA] gold_returns = returns[self.GOLD] industrials_returns = returns[self.INDU] utilities_returns = returns[self.UTIL] metals_returns = returns[self.METL] dollar_returns = returns[self.USDX] DISTILLED_BEAR = (((gold_returns > silver_returns) and (utilities_returns > industrials_returns)) and (metals_returns < dollar_returns) ) return DISTILLED_BEAR def rebalance_when_out_of_the_market(self): if self.go_inout_vs_dbear==1: out_signal = self.signalcheck_inout() if self.go_inout_vs_dbear==0: out_signal = self.signalcheck_dbear() ##### Determine whether 'in' or 'out' of the market. Perform out trading if applicable ##### if out_signal: self.be_in = False self.outday = self.dcount if self.quantity[self.BND1] == 0: for symbol in self.quantity.copy().keys(): if symbol == self.BND1: continue self.Order(symbol, - self.quantity[symbol]) self.Debug([str(self.Time), str(symbol), str(-self.quantity[symbol])]) del self.quantity[symbol] quantity = self.Portfolio.TotalPortfolioValue / self.Securities[self.BND1].Close self.quantity[self.BND1] = math.floor(quantity) self.Order(self.BND1, self.quantity[self.BND1]) self.Debug([str(self.Time), str(self.BND1), str(self.quantity[self.BND1])]) if (self.dcount >= self.outday + self.adjwaitdays): self.be_in = True # Update stock ranking/holdings, when swithing from 'out' to 'in' plus every X days when 'in' (set rebalance frequency) if (self.be_in and not self.be_in_prior) or (self.be_in and (self.dcount==self.reb_count)): self.rebalance() self.be_in_prior = self.be_in self.dcount += 1 def rebalance(self): if self.symbols is None: return chosen_df = self.calc_return(self.symbols) chosen_df = chosen_df.iloc[:self.num_stocks] if self.quantity[self.BND1] > 0: self.Order(self.BND1, - self.quantity[self.BND1]) self.Debug([str(self.Time), str(self.BND1), str(-self.quantity[self.BND1])]) self.quantity[self.BND1] = 0 weight = 1 / self.num_stocks for symbol in self.quantity.copy().keys(): if symbol == self.BND1: continue if not self.CurrentSlice.ContainsKey(symbol) or self.CurrentSlice[symbol] is None: continue if symbol not in chosen_df.index: self.Order(symbol, - self.quantity[symbol]) self.Debug([str(self.Time), str(symbol), str(-self.quantity[symbol])]) del self.quantity[symbol] else: quantity = self.Portfolio.TotalPortfolioValue * weight / self.Securities[symbol].Close if math.floor(quantity) != self.quantity[symbol]: self.Order(symbol, math.floor(quantity) - self.quantity[symbol]) self.Debug([str(self.Time), str(symbol), str(math.floor(quantity) -self.quantity[symbol])]) self.quantity[symbol] = math.floor(quantity) for symbol in chosen_df.index: if not self.CurrentSlice.ContainsKey(symbol) or self.CurrentSlice[symbol] is None: continue if symbol not in self.quantity.keys(): quantity = self.Portfolio.TotalPortfolioValue * weight / self.Securities[symbol].Close self.quantity[symbol] = math.floor(quantity) self.Order(symbol, self.quantity[symbol]) self.Debug([str(self.Time), str(symbol), str(self.quantity[symbol])]) def calc_return(self, stocks): ret = {} for symbol in stocks: try: ret[symbol] = self.data[symbol].Roc.Current.Value except: self.Debug(str(symbol)) continue df_ret = pd.DataFrame.from_dict(ret, orient='index') df_ret.columns = ['return'] sort_return = df_ret.sort_values(by = ['return'], ascending = self.lowmom) return sort_return def record_vars(self): if self.dcount==1: self.benchmarks = [self.history[self.MRKT].iloc[-2], self.Portfolio.TotalPortfolioValue, self.history[self.QQQ].iloc[-2]] # reset portfolio value and qqq benchmark annually if self.Time.year!=self.year: self.benchmarks = [self.benchmarks[0], self.Portfolio.TotalPortfolioValue, self.history[self.QQQ].iloc[-2]] self.year = self.Time.year # SPY benchmark for main chart spy_perf = self.history[self.MRKT].iloc[-1] / self.benchmarks[0] * self.cap self.Plot('Strategy Equity', 'SPY', spy_perf) # Leverage gauge: cash level self.Plot('Cash level', 'cash', round(self.Portfolio.Cash+self.Portfolio.UnsettledCash, 0)) # Annual saw tooth return comparison: Portfolio VS QQQ saw_portfolio_return = self.Portfolio.TotalPortfolioValue / self.benchmarks[1] - 1 saw_qqq_return = self.history[self.QQQ].iloc[-1] / self.benchmarks[2] - 1 self.Plot('Annual Saw Tooth Returns: Portfolio VS QQQ', 'Annual portfolio return', round(saw_portfolio_return, 4)) self.Plot('Annual Saw Tooth Returns: Portfolio VS QQQ', 'Annual QQQ return', round(float(saw_qqq_return), 4)) ### IN/Out indicator and wait days self.Plot("In Out", "in_market", int(self.be_in)) self.Plot("Wait Days", "waitdays", self.adjwaitdays) class SymbolData(object): def __init__(self, symbol, roc, algorithm): self.Symbol = symbol self.Roc = RateOfChange(roc) self.algorithm = algorithm self.consolidator = algorithm.ResolveConsolidator(symbol, Resolution.Daily) algorithm.RegisterIndicator(symbol, self.Roc, self.consolidator) def Warmup(self, history): for index, row in history.iterrows(): self.Roc.Update(index, row['close'])