Overall Statistics |
Total Trades 0 Average Win 0% Average Loss 0% Compounding Annual Return 0% Drawdown 0% Expectancy 0 Net Profit 0% Sharpe Ratio 0 Loss Rate 0% Win Rate 0% Profit-Loss Ratio 0 Alpha 0 Beta 0 Annual Standard Deviation 0 Annual Variance 0 Information Ratio 0 Tracking Error 0 Treynor Ratio 0 Total Fees $0.00 |
# from Alphas.EmaCrossAlphaModel import EmaCrossAlphaModel from Execution.ImmediateExecutionModel import ImmediateExecutionModel from Risk.NullRiskManagementModel import NullRiskManagementModel from datetime import datetime from collections import deque class BasicTemplateFrameworkAlgorithm(QCAlgorithmFramework): def Initialize(self): # Set requested data resolution self.UniverseSettings.Resolution = Resolution.Minute self.SetStartDate(2018, 2, 22) #Set Start Date self.SetEndDate(2018, 4, 22) #Set End Date self.SetCash(100000) #Set Strategy Cash self.UniverseSettings.Resolution = Resolution.Minute symbols = [ Symbol.Create("SPY", SecurityType.Equity, Market.USA) ] self.SetUniverseSelection( ManualUniverseSelectionModel(symbols) ) self.SetAlpha(EmaCrossAlphaModel(50, 200, Resolution.Minute)) self.SetPortfolioConstruction(NullPortfolioConstructionModel()) self.SetExecution(ImmediateExecutionModel()) self.SetRiskManagement(NullRiskManagementModel()) def OnOrderEvent(self, orderEvent): if orderEvent.Status == OrderStatus.Filled: # self.Debug("Purchased Stock: {0}".format(orderEvent.Symbol)) pass from QuantConnect.Indicators import * from QuantConnect.Algorithm.Framework.Alphas import * class EmaCrossAlphaModel(AlphaModel): '''Alpha model that uses an EMA cross to create insights''' def __init__(self, fastPeriod = 12, slowPeriod = 26, resolution = Resolution.Daily): '''Initializes a new instance of the EmaCrossAlphaModel class Args: fastPeriod: The fast EMA period slowPeriod: The slow EMA period''' self.fastPeriod = fastPeriod self.slowPeriod = slowPeriod self.resolution = resolution self.predictionInterval = Time.Multiply(Extensions.ToTimeSpan(resolution), fastPeriod) self.symbolDataBySymbol = {} resolutionString = Extensions.GetEnumString(resolution, Resolution) self.Name = '{}({},{},{})'.format(self.__class__.__name__, fastPeriod, slowPeriod, resolutionString) def Update(self, algorithm, data): '''Updates this alpha model with the latest data from the algorithm. This is called each time the algorithm receives data for subscribed securities Args: algorithm: The algorithm instance data: The new data available Returns: The new insights generated''' insights = [] for symbol, symbolData in self.symbolDataBySymbol.items(): if symbolData.Fast.IsReady and symbolData.Slow.IsReady: if symbolData.FastIsOverSlow: if symbolData.Slow.Value > symbolData.Fast.Value: insights.append(Insight.Price(symbolData.Symbol, self.predictionInterval, InsightDirection.Down)) elif symbolData.SlowIsOverFast: if symbolData.Fast.Value > symbolData.Slow.Value: insights.append(Insight.Price(symbolData.Symbol, self.predictionInterval, InsightDirection.Up)) symbolData.FastIsOverSlow = symbolData.Fast.Value > symbolData.Slow.Value return insights def OnSecuritiesChanged(self, algorithm, changes): '''Event fired each time the we add/remove securities from the data feed Args: algorithm: The algorithm instance that experienced the change in securities changes: The security additions and removals from the algorithm''' for added in changes.AddedSecurities: symbolData = self.symbolDataBySymbol.get(added.Symbol) if symbolData is None: # create fast/slow EMAs symbolData = SymbolData(added) symbolData.Fast = SMA(added.Symbol, self.fastPeriod) symbolData.Slow = SMA(added.Symbol, self.slowPeriod) algorithm.RegisterIndicator(added.Symbol, symbolData.Fast, self.resolution) algorithm.RegisterIndicator(added.Symbol, symbolData.Slow, self.resolution) # symbolData.Fast = algorithm.SMA(added.Symbol, self.fastPeriod, self.resolution) # symbolData.Slow = algorithm.SMA(added.Symbol, self.slowPeriod, self.resolution) self.symbolDataBySymbol[added.Symbol] = symbolData else: # a security that was already initialized was re-added, reset the indicators symbolData.Fast.Reset() symbolData.Slow.Reset() class SymbolData: '''Contains data specific to a symbol required by this model''' def __init__(self, security): self.Security = security self.Symbol = security.Symbol self.Fast = None self.Slow = None # True if the fast is above the slow, otherwise false. # This is used to prevent emitting the same signal repeatedly self.FastIsOverSlow = False @property def SlowIsOverFast(self): return not self.FastIsOverSlow class SMA: def __init__(self, name, period): self.Name = name self.Time = datetime.min self.Value = 0 self.IsReady = False self.queue = deque(maxlen=period) def __repr__(self): return "{0} -> IsReady: {1}. Time: {2}. Value: {3}".format(self.Name, self.IsReady, self.Time, self.Value) # Update method is mandatory def Update(self, input): self.queue.appendleft(input.Close) count = len(self.queue) self.Time = input.EndTime self.Value = sum(self.queue) / count self.IsReady = count == self.queue.maxlen