Overall Statistics |
Total Trades 4 Average Win 0.01% Average Loss -4.16% Compounding Annual Return -3.679% Drawdown 15.000% Expectancy -0.499 Net Profit -1.519% Sharpe Ratio -0.048 Loss Rate 50% Win Rate 50% Profit-Loss Ratio 0.00 Alpha -0.171 Beta 1.411 Annual Standard Deviation 0.204 Annual Variance 0.042 Information Ratio -0.904 Tracking Error 0.137 Treynor Ratio -0.007 Total Fees $43.03 |
# # QuantConnect Basic Template: # Fundamentals to using a QuantConnect algorithm. # # You can view the QCAlgorithm base class on Github: # https://github.com/QuantConnect/Lean/tree/master/Algorithm # import numpy as np class BasicTemplateAlgorithm(QCAlgorithm): def Initialize(self): # Set the cash we'd like to use for our backtest # This is ignored in live trading self.SetCash(100000) # Start and end dates for the backtest. # These are ignored in live trading. self.SetStartDate(2016,5,5) self.SetEndDate(2016,10,2) # Add assets you'd like to see self.gs = self.AddEquity("GS", Resolution.Daily).Symbol self.ms = self.AddEquity("MS", Resolution.Daily).Symbol self.goog = self.AddEquity("GOOG",Resolution.Daily).Symbol self.count = 0 def OnData(self, slice): # Simple buy and hold template if self.count == 1: self.SetHoldings(self.gs, 1) self.SetHoldings(self.ms, -1) elif self.count == 10: # self.SetHoldings(self.ms,0) self.Liquidate(self.ms) self.SetHoldings(self.gs, 1) self.SetHoldings(self.goog, -1) self.count += 1