Overall Statistics |
Total Trades 1 Average Win 0% Average Loss 0% Compounding Annual Return 8.490% Drawdown 55.300% Expectancy 0 Net Profit 401.912% Sharpe Ratio 0.489 Probabilistic Sharpe Ratio 0.476% Loss Rate 0% Win Rate 0% Profit-Loss Ratio 0 Alpha 0.094 Beta -0.099 Annual Standard Deviation 0.176 Annual Variance 0.031 Information Ratio 0.027 Tracking Error 0.26 Treynor Ratio -0.871 Total Fees $12.50 Estimated Strategy Capacity $140000.00 |
# QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals. # Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from clr import AddReference AddReference("System") AddReference("QuantConnect.Algorithm") AddReference("QuantConnect.Common") from System import * from QuantConnect import * from QuantConnect.Algorithm import * import numpy as np ### <summary> ### Basic template algorithm simply initializes the date range and cash. This is a skeleton ### framework you can use for designing an algorithm. ### </summary> ### <meta name="tag" content="using data" /> ### <meta name="tag" content="using quantconnect" /> ### <meta name="tag" content="trading and orders" /> class BasicTemplateAlgorithm(QCAlgorithm): '''Basic template algorithm simply initializes the date range and cash''' def Initialize(self): '''Initialise the data and resolution required, as well as the cash and start-end dates for your algorithm. All algorithms must initialized.''' self.SetStartDate(2001,5, 24) #Set Start Date self.SetEndDate(2021,3,5) #Set End Date self.SetCash(100000) #Set Strategy Cash # Find more symbols here: http://quantconnect.com/data self.AddEquity("SPY", Resolution.Daily) self.AddEquity("QQQ", Resolution.Daily) self.AddEquity("VTI", Resolution.Daily) #self.Debug("numpy test >>> print numpy.pi: " + str(np.pi)) self.SetBenchmark("SPY") #self.SetBenchmark("QQQ") mainChart = Chart("Equity Curve With Benchmark") mainChart.AddSeries(Series("Equity Curve", SeriesType.Candle, 0)) mainChart.AddSeries(Series("Benchmark", SeriesType.Line, 0)) self.AddChart(mainChart) self.scale = None def OnData(self, data): '''OnData event is the primary entry point for your algorithm. Each new data point will be pumped in here. Arguments: data: Slice object keyed by symbol containing the stock data ''' if self.scale == None: self.scale = 100000 / data["SPY"].Price if not self.Portfolio.Invested: #self.SetHoldings("SPY", 0.5) #self.SetHoldings("QQQ", 0.5) self.SetHoldings("VTI", 1) self.Plot("Equity Curve With Benchmark", "Equity Curve", self.Portfolio.TotalPortfolioValue) self.Plot("Equity Curve With Benchmark", "Benchmark", self.Benchmark.Evaluate(self.Time) * self.scale)