Overall Statistics |
Total Trades 426 Average Win 0.37% Average Loss -0.21% Compounding Annual Return -0.285% Drawdown 23.600% Expectancy 0.545 Net Profit -0.606% Sharpe Ratio 0.063 Probabilistic Sharpe Ratio 5.003% Loss Rate 43% Win Rate 57% Profit-Loss Ratio 1.72 Alpha 0 Beta 0 Annual Standard Deviation 0.152 Annual Variance 0.023 Information Ratio 0.063 Tracking Error 0.152 Treynor Ratio 0 Total Fees $4084.92 Estimated Strategy Capacity $1700000.00 Lowest Capacity Asset NTRS R735QTJ8XC9X |
from AlgorithmImports import * from settings import * from collections import namedtuple import operator import functools class ExpansionBreakoutStrategy(QCAlgorithm): def Initialize(self): settings = self.GetSettings() self.SetStartDate(settings.startDate) self.SetEndDate(settings.endDate) self.SetCash(settings.startCash) self.SetBrokerageModel(BrokerageName.InteractiveBrokersBrokerage, AccountType.Margin) self.DefaultOrderProperties = InteractiveBrokersOrderProperties() self.DefaultOrderProperties.TimeInForce = TimeInForce.GoodTilCanceled #self.VIX = self.AddIndex("VIX", Resolution.Daily).Symbol self.selectionDataDict = {} self.UpSymbols = self.DownSymbols = [] self.day = self.month = None self.coarseSymbols = [] self.symbolDataDict = {} self.HasOpenLongPositions = self.HasOpenShortPositions = False self.NumberOfLongPositions = self.NumberOfShortPositions = 0 self.maxLongPositions = settings.numberOfLongPositions self.maxShortPositions = settings.numberOfShortPositions self.numberOfSymbolsCoarse = settings.numberOfStocksToScan self.maximumPricePerShare = settings.maximumPricePerShare self.minimumPricePerShare = settings.minimumPricePerShare self.trailingStopDistPct = 0 self.StopActivateProfit = 0 if self.GetParameters().ContainsKey("StopActivateProfit"): param = self.GetParameter("StopActivateProfit") if param is not None and (isinstance(param, float) or isinstance(param, int) or isinstance(param, str)): self.StopActivateProfit = float(param) if self.StopActivateProfit == 0: self.StopActivateProfit = settings.StopActivateProfit if self.GetParameters().ContainsKey("trailingStopDistPct"): param = self.GetParameter("trailingStopDistPct") if param is not None and (isinstance(param, float) or isinstance(param, int) or isinstance(param, str)): self.trailingStopDistPct = float(param) if self.trailingStopDistPct == 0: self.trailingStopDistPct = settings.trailingStopDistPct self.initialStopDistancePoints = settings.initialStopDistPoints self.weight = min(settings.portfolioWeightPerStock, 1/(self.maxLongPositions + self.maxShortPositions)) self.UniverseSettings.FillForward = True self.AddUniverse(self.SelectCoarse) self.tickerToPlot = settings.tickerToPlot def GetSettings(self): paramNames = ['startDate', 'endDate', 'startCash', 'numberOfStocksToScan', 'minimumPricePerShare', 'maximumPricePerShare', 'numberOfLongPositions', 'numberOfShortPositions', 'initialStopDistPoints', 'trailingStopDistPct', 'portfolioWeightPerStock', 'StopActivateProfit', 'tickerToPlot'] paramValues = [datetime(*startDate), datetime(*endDate), startCash, numberOfStocksToScan, minimumPricePerShare, maximumPricePerShare, numberOfLongPositions, numberOfShortPositions, initialStopDistPoints, trailingStopDistPct, portfolioWeightPerStock, StopActivateProfit, tickerToPlot] paramSettings = namedtuple('Settings', paramNames) settings = paramSettings(*[*map(operator.itemgetter(1), zip(paramNames, paramValues))]) return settings def OnData(self, data): for symbol, symbolData in self.symbolDataDict.items(): if symbol not in data.QuoteBars: continue if symbolData.Holdings.Invested: if symbolData.ExitConditionMet: self.Liquidate(symbol) else: if not symbolData.TrailingStopFlag: if symbolData.Holdings.UnrealizedProfitPercent < self.StopActivateProfit: symbolData.trailingStop.Reset() else: symbolData.TrailingStopFlag = True continue else: if symbolData.Flag and symbolData.Signal != 0: direction = sign(symbolData.Signal) if (direction > 0 and self.NumberOfLongPositions >= self.maxLongPositions) or (direction < 0 and self.NumberOfShortPositions >= self.maxShortPositions): continue # we have a signal for this symbol, let's place a stop entry order orderQuantity = self.CalculateOrderQuantity(symbol, direction * self.weight) if orderQuantity == 0: continue stopEntryPrice = symbolData.CurrentHigh.Current.Value if direction > 0 else symbolData.CurrentLow.Current.Value stopEntryPrice += direction*1/8 orderProperties = OrderProperties() orderProperties.TimeInForce = TimeInForce.GoodTilDate(self.Time + timedelta(days=1)) self.LimitOrder(symbol, orderQuantity, stopEntryPrice, orderProperties = orderProperties) symbolData.Flag = False else: continue def OnOrderEvent(self, orderEvent): if orderEvent.Status == OrderStatus.Filled: symbol = orderEvent.Symbol holdings = self.symbolDataDict[symbol].Holdings if orderEvent.FillQuantity * holdings.Quantity > 0: # we have entered a position, let's place the stop market order openOrders = self.Transactions.GetOpenOrders(symbol) if len(openOrders) == 0: direction = sign(orderEvent.FillQuantity) orderProperties = OrderProperties() orderProperties.TimeInForce = TimeInForce.GoodTilCanceled cmp = operator.gt if direction > 0 else operator.lt if cmp(orderEvent.FillPrice, self.symbolDataDict[symbol].PreviousClose): stopPrice = self.symbolDataDict[symbol].StopPrice self.StopMarketOrder(symbol, -orderEvent.FillQuantity, stopPrice, orderProperties = orderProperties) self.symbolDataDict[symbol].trailingStop.Reset() if holdings.Quantity == 0: # liquidated, let's cancel all open orders for this symbol self.Transactions.CancelOpenOrders(symbol) self.UpdatePortfolioState() def UpdatePortfolioState(self): numberOfLongPositions = numberOfShortPositions = 0 for symbol, holding in self.Portfolio.items(): if holding.IsLong: numberOfLongPositions += 1 elif holding.IsShort: numberOfShortPositions += 1 else: continue self.NumberOfLongPositions = numberOfLongPositions self.NumberOfShortPositions = numberOfShortPositions self.HasOpenLongPositions = numberOfLongPositions > 0 self.HasOpenShortPositions = numberOfShortPositions > 0 @property def CurrentHoldings(self): return [(symbol.Value, holding.Quantity) for symbol,holding in self.Portfolio.items() if holding.Invested] def OnSecuritiesChanged(self, changes): for security in changes.RemovedSecurities: symbol = security.Symbol symbolData = self.symbolDataDict.pop(symbol, None) if symbolData is not None: symbolData.Dispose(self) for security in changes.AddedSecurities: symbol = security.Symbol self.symbolDataDict[symbol] = SymbolData(self, security, self.selectionDataDict[symbol], self.trailingStopDistPct, self.initialStopDistancePoints, self.tickerToPlot) def SelectCoarse(self, coarse): selection = [] upSignals = [] downSignals = [] symbols = self.coarseSymbols if self.month != self.Time.month: filteredCoarse = [c for c in coarse if ( self.minimumPricePerShare < c.Price < self.maximumPricePerShare and c.Volume > 1e5 and c.HasFundamentalData and (self.Time - c.Symbol.ID.Date).days > 42)] symbols = [c.Symbol for c in sorted(filteredCoarse, key=lambda c: c.DollarVolume, reverse=True)[:self.numberOfSymbolsCoarse]] self.coarseSymbols = symbols self.month = self.Time.month lastBar = self.History(symbols, 1, Resolution.Daily) for symbol in symbols: if symbol.ID.ToString() not in lastBar.index.levels[0]: continue if symbol not in self.selectionDataDict: self.selectionDataDict[symbol] = SelectionData(self, symbol) bar = lastBar.loc[symbol] if bar.shape != (1,5) or bar.isnull().any().any(): continue tradeBar = TradeBar(bar.index[0], symbol, bar.open[0], bar.high[0], bar.low[0], bar.close[0], bar.volume[0]) selectionData = self.selectionDataDict[symbol] selectionData.Update(tradeBar) if selectionData.Signal == 1: upSignals.append(symbol) elif selectionData.Signal == -1: downSignals.append(symbol) if len(upSignals) > 0 and self.NumberOfLongPositions < self.maxLongPositions: self.UpSymbols = sorted(upSignals, key = lambda x: self.selectionDataDict[x].relativeVolume.Current.Value)[:self.maxLongPositions - self.NumberOfLongPositions] selection.extend(self.UpSymbols) if len(downSignals) > 0 and self.NumberOfShortPositions < self.maxShortPositions: self.DownSymbols = sorted(downSignals, key = lambda x: self.selectionDataDict[x].relativeVolume.Current.Value)[:self.maxShortPositions - self.NumberOfShortPositions] selection.extend(self.DownSymbols) symbolsWithOpenOrders = [symbol for symbol, symbolData in self.symbolDataDict.items() if len(self.Transactions.GetOpenOrders(symbol)) > 0] currentHoldings = [symbol for symbol,holding in self.Portfolio.items() if holding.Invested] selection.extend(symbolsWithOpenOrders) selection.extend(currentHoldings) return np.unique(selection).tolist() class SymbolData: def __init__(self, algorithm, security, selectionData, trailingStopDistPct, initialStopDistPoints, tickerToPlot): self.algorithm = algorithm self.Security = security self.Symbol = security.Symbol self.Holdings = security.Holdings self.selectionData = selectionData self.Signal = selectionData.Signal previousClose = selectionData.expansionBreakoutIndicator.Close self.StopPrice = previousClose - self.Signal*initialStopDistPoints self.PreviousClose = previousClose previousHigh = selectionData.expansionBreakoutIndicator.High previousLow = selectionData.expansionBreakoutIndicator.Low self.CurrentHigh = algorithm.Identity(self.Symbol, Resolution.Daily, Field.High) self.CurrentLow = algorithm.Identity(self.Symbol, Resolution.Daily, Field.Low) self.PreviousHigh = IndicatorExtensions.Of(Delay(1), self.CurrentHigh) self.PreviousLow = IndicatorExtensions.Of(Delay(1), self.CurrentLow) self.Consolidators = [algorithm.ResolveConsolidator(self.Symbol, resolution) for resolution in [Resolution.Minute, Resolution.Daily]] self.Flag = True self.day = None self.CurrentHigh.Update(algorithm.Time, previousHigh) self.CurrentLow.Update(algorithm.Time, previousLow) self.TrailingStopFlag = False self.trailingStop = TrailingStop(trailingStopDistPct, self.Signal) algorithm.RegisterIndicator(self.Symbol, self.trailingStop, Resolution.Minute) algorithm.WarmUpIndicator(self.Symbol, self.trailingStop, Resolution.Minute) self.scheduledEvents = [] if tickerToPlot == self.Symbol.Value: self.InitCharts() self.scheduledEvents.append(algorithm.Schedule.On(algorithm.DateRules.EveryDay(self.Symbol), algorithm.TimeRules.Every(timedelta(minutes=5)), self.UpdateCharts)) @property def IsReady(self): return self.trailingStop.IsReady and self.CurrentHigh.IsReady and self.CurrentLow.IsReady @property def ExitConditionMet(self): if self.trailingStop.Triggered: return True return False def Dispose(self, algorithm): for consolidator in self.Consolidators: algorithm.SubscriptionManager.RemoveConsolidator(self.Symbol, consolidator) if len(self.scheduledEvents) > 0: for scheduledEvent in self.scheduledEvents: scheduledEvent = None def InitCharts(self): chart = Chart(self.Symbol.Value, ChartType.Stacked) chart.AddSeries(Series('Price', SeriesType.Scatter, 0, "$")) # chart.AddSeries(Series('Price (Low)', SeriesType.Line, 0, "$")) chart.AddSeries(Series('Trailing Stop', SeriesType.Scatter, 0, "$")) chart.AddSeries(Series('Portfolio Exposure', SeriesType.Scatter, 1, "%")) self.algorithm.AddChart(chart) def UpdateCharts(self): if self.Symbol not in self.algorithm.CurrentSlice.Bars: return if not self.algorithm.IsMarketOpen(self.Symbol): return tradeBar = self.algorithm.CurrentSlice.Bars[self.Symbol] self.algorithm.Plot(self.Symbol.Value, 'Price', tradeBar.Close) self.algorithm.Plot(self.Symbol.Value, 'Portfolio Exposure', self.algorithm.Portfolio[self.Symbol].HoldingsValue/self.algorithm.Portfolio.TotalPortfolioValue*100) if not self.IsReady or self.trailingStop.Value == 0: return self.algorithm.Plot(self.Symbol.Value, 'Trailing Stop', self.trailingStop.Value) class SelectionData: def __init__(self, algorithm, symbol): self.algorithm = algorithm self.Symbol = symbol self.expansionBreakoutIndicator = ExpansionBreakoutIndicator() algorithm.WarmUpIndicator(self.Symbol, self.expansionBreakoutIndicator, Resolution.Daily) self.relativeVolume = RelativeDailyVolume() algorithm.WarmUpIndicator(self.Symbol, self.relativeVolume, Resolution.Daily) def Update(self, tradeBar): self.expansionBreakoutIndicator.Update(tradeBar) self.relativeVolume.Update(tradeBar) @property def Signal(self): if not self.IsReady: return 0 return self.expansionBreakoutIndicator.Signal @property def Volume(self): return self.expansionBreakoutIndicator.Volume @property def IsReady(self): return self.expansionBreakoutIndicator.IsReady class ExpansionBreakoutIndicator(PythonIndicator): def __init__(self): self.Time = datetime.min self.Value = 0 self.Close = 0 self.High = 0 self.Low = 0 self.Volume = 0 self.rollingHigh = Maximum(42) self.rollingLow = Minimum(42) self.dailyRange = 0 self.largestDailyRange = Maximum(9) self.WarmUpPeriod = 42 self.Signal = 0 self.previousHigh = 0 self.previousLow = 0 self.previousClose = 0 def Update(self, data): self.Signal = 0 self.Time = data.Time self.previousClose = self.Close self.Close = data.Close self.High = data.High self.Low = data.Low self.Volume = data.Volume self.dailyRange = data.High - data.Low if self.dailyRange >= self.largestDailyRange.Current.Value: if self.Close > self.rollingHigh.Current.Value: self.Signal = 1 elif self.Close < self.rollingLow.Current.Value: self.Signal = -1 self.previousHigh = self.rollingHigh.Current.Value self.previousLow = self.rollingLow.Current.Value self.rollingHigh.Update(data.Time, data.High) self.rollingLow.Update(data.Time, data.Low) self.largestDailyRange.Update(data.Time, self.dailyRange) @property def IsReady(self): return self.rollingHigh.IsReady and self.Time > datetime.min def sign(x): if x == 0: return x if x > 0: return 1 if x < 0: return -1 class TrailingStop(PythonIndicator): def __init__(self, pct_dist = 0.1, direction = 1): self.pctDist = pct_dist self.direction = direction self.prevClose = 0 self.Flag = False self.Value = 0 self.Time = datetime.min self.WarmUpPeriod = 1 def Update(self, data): self.Time = data.Time if self.Value*self.prevClose == 0: self.prevClose = data.Close self.Value = self.prevClose*(1 - self.direction*self.pctDist) return if self.direction == 1: if data.Close > self.prevClose: self.Value = data.Close*(1 - self.pctDist) self.prevClose = data.Close if data.Close < self.Value: self.Flag = True elif self.direction == -1: if data.Close < self.prevClose: self.Value = data.Close*(1 + self.pctDist) self.prevClose = data.Close if data.Close > self.Value: self.Flag = True @property def IsReady(self): return self.prevClose * self.Value != 0 def Reset(self): self.Value = 0 self.Time = datetime.min self.prevClose = 0 self.Flag = False @property def Triggered(self): return self.Flag
''' ---------- startDate ---------- The start date of the backtest in the format (YYYY, MM, DD). -------- endDate -------- The end date of the backtest in the format (YYYY, MM, DD). You can also set the endDate as a date in the future. By doing so the backtest will run to the most recent day which is usually yesterday. --------------------- numberOfStocksToScan --------------------- The number of stocks you want to scan for signals. Let you control the speed of the backtest. A number significantly larger than 1,000 will slow down the backtest dramatically without significant impact. I recommend to choose a number between 100 and 1,000. --------------------- minimumPricePerShare --------------------- The minimum price per share for the universe selection method. Example: minimumPricePerShare = 10 will ignore all stocks with a share price below 10 on that day. --------------------- maximumPricePerShare --------------------- The maximum price per share for the universe selection method. See also minimumPricePerShare above. --------------------- numberOfLongPositions --------------------- The maximum number of long positions held at the same time. ---------------------- numberOfShortPositions ---------------------- Analogous to above, the maximum number of short positions held at the same time. --------------------- initialStopDistPoints --------------------- The distance for the initial stop in points/dollars. Does not affect the trailing stop. ------------------- trailingStopDistPct ------------------- The percentage distance of the trailing stop. ------------------------ portfolioWeightPerStock ------------------------ Controls the position size as a percentage of the current total portfolio value. Example: portfolioWeightPerStock = 0.5 will allocate 50% of cash per security per signal. ------------ tickerToPlot ------------ The Ticker you'd like to choose for plotting. This will plot the price, trailing stop and portfolio weight/exposure every minute. '''
################################################################################ # ------------------------------------------------------------------------------ # The settings for your trading algorithm # ------------------------------------------------------------------------------ ################################################################################ # ------------------------------------------------------------------------------ # General settings # ------------------------------------------------------------------------------ startDate = (2020, 1, 1) endDate = (2022, 2, 15) startCash = 1000000 # ------------------------------------------------------------------------------ # Selection # ------------------------------------------------------------------------------ numberOfStocksToScan = 500 minimumPricePerShare = 15 maximumPricePerShare = 130 numberOfLongPositions = 8 numberOfShortPositions = 2 # ------------------------------------------------------------------------------ # Exit conditions, Risk Management & Position sizing # ------------------------------------------------------------------------------ initialStopDistPoints = 1 trailingStopDistPct = 1 portfolioWeightPerStock = 0.1 StopActivateProfit = 0.04 # --------- # Charting # --------- tickerToPlot = 'NARI'