Overall Statistics
Total Trades
10001
Average Win
0.04%
Average Loss
-0.04%
Compounding Annual Return
-65.884%
Drawdown
66.700%
Expectancy
-0.408
Net Profit
-66.039%
Sharpe Ratio
-2.119
Probabilistic Sharpe Ratio
0.000%
Loss Rate
70%
Win Rate
30%
Profit-Loss Ratio
1.00
Alpha
-0.558
Beta
-0.057
Annual Standard Deviation
0.264
Annual Variance
0.07
Information Ratio
-1.461
Tracking Error
0.405
Treynor Ratio
9.862
Total Fees
$11911.93
import pandas as pd
import numpy as np
import cvxpy as cv


class OptimisationPortfolioConstructionModel():

    def __init__(self, turnover, max_wt, longshort):
        self.turnover = turnover
        self.max_wt = max_wt
        self.longshort = longshort

    def GenerateOptimalPortfolio(self, algorithm, alpha_df):
        # algorithm.Log("Generating target portfolio...")
        
        alphas =alpha_df['alpha_score']
        
        optimal_portfolio = self.Optimise(algorithm, self.AddZeroHoldings(algorithm, alphas))
        
        # algorithm.Log(f"Created a portfolio of {len(optimal_portfolio[optimal_portfolio != 0])} securities")
        
        return optimal_portfolio

    def AddZeroHoldings(self, algorithm, portfolio):
        zero_holding_securities = [str(s.Symbol) for s in algorithm.Portfolio.Values if s.Invested and str(s.Symbol) not in portfolio.index]
        for security in zero_holding_securities:
            portfolio.loc[security] = 0
        return portfolio
    
    def Optimise(self, algorithm, alphas):
        invested_securities = [security for security in algorithm.Portfolio.Values if security.Invested]
        if len(invested_securities) == 0:
            algorithm.Log('Initial portfolio rebalance')
            self.initial_rebalance = True
            turnover = 1
            initial_portfolio = pd.DataFrame(columns=['symbol', 'weight', 'alpha']).set_index('symbol')
        else:
            self.initial_rebalance = False
            turnover = self.turnover
            initial_portfolio = pd.DataFrame.from_records(
                [
                    {
                        'symbol': str(security.Symbol),
                        'weight': security.HoldingsValue / algorithm.Portfolio.TotalHoldingsValue,
                        'alpha': alphas.loc[security] if security in alphas.index else 0,
                    } for security in invested_securities
                ]).set_index('symbol')
        for security, alpha in alphas.iteritems():
            if security not in initial_portfolio.index:
                initial_portfolio.loc[security, 'weight'] = 0
                initial_portfolio.loc[security, 'alpha'] = alpha
        
        for i in range(int(turnover*100), 101, 1):
            to = i / 100
            optimiser = Optimiser(initial_portfolio, turnover=to, max_wt=self.max_wt)
            optimal_portfolio, optimisation_status = optimiser.optimise()
            if optimisation_status != 'optimal':
                algorithm.Log(f'Optimisation with {to} turnover not feasible: {optimisation_status}')
            else:
                break
        return optimal_portfolio


class Optimiser:
#very nice thanks 
    def __init__(self, initial_portfolio, turnover, max_wt, longshort=True):
        self.symbols = np.array(initial_portfolio.index)
        self.init_wt = np.array(initial_portfolio['weight'])
        self.opt_wt = cv.Variable(self.init_wt.shape)
        self.alpha = np.array(initial_portfolio['alpha'])
        self.longshort = longshort
        self.turnover = turnover
        self.max_wt = max_wt
        if self.longshort:
            self.min_wt = -self.max_wt
            self.net_exposure = 0
            self.gross_exposure = 1
        else:
            self.min_wt = 0
            self.net_exposure = 1
            self.gross_exposure = 1

    def optimise(self):
        constraints = self.get_constraints()
        optimisation = cv.Problem(cv.Maximize(cv.sum(self.opt_wt*self.alpha)), constraints)
        optimisation.solve()
        status = optimisation.status
        if status == 'optimal':
            optimal_portfolio = pd.Series(np.round(optimisation.solution.primal_vars[list(optimisation.solution.primal_vars.keys())[0]], 3), index=self.symbols)
        else:
            optimal_portfolio = pd.Series(np.round(self.init_wt, 3), index=self.symbols)
        return optimal_portfolio, status

    def get_constraints(self):
        min_wt = self.opt_wt >= self.min_wt
        max_wt = self.opt_wt <= self.max_wt
        turnover = cv.sum(cv.abs(self.opt_wt-self.init_wt)) <= self.turnover*2
        net_exposure = cv.sum(self.opt_wt) == self.net_exposure
        gross_exposure = cv.sum(cv.abs(self.opt_wt)) <= self.gross_exposure
        return [min_wt, max_wt, turnover, net_exposure, gross_exposure]
class FactorUniverseSelectionModel():
    
    def __init__(self, algorithm):
        self.algorithm = algorithm
    
    def SelectCoarse(self, coarse):
        # self.algorithm.Log("Generating universe...")
        self.filtered_coarse = [x.Symbol for x in coarse if (x.HasFundamentalData)
                                                            and (x.Market == "usa")]
        return self.filtered_coarse
        universe = self.FilterDollarPriceVolume(coarse)
        return [c.Symbol for c in universe]

    def SelectFine(self, fine):
        universe = self.FilterFactor(self.FilterFinancials(fine))
        self.algorithm.Log(f"Universe consists of {len(universe)} securities")
        self.algorithm.securities = universe
        

        return [f.Symbol for f in universe]
      
    def FilterDollarPriceVolume(self, coarse):
        filter_dollar_price = [c for c in coarse if c.Price > 1]
        sorted_dollar_volume = sorted([c for c in filter_dollar_price if c.HasFundamentalData], key=lambda c: c.DollarVolume, reverse=True)
        return sorted_dollar_volume[:1000]

    def FilterFinancials(self, fine):
        filter_financials = [f for f in fine if f.AssetClassification.MorningstarSectorCode != MorningstarSectorCode.FinancialServices]
        return filter_financials
    
    def FilterFactor(self, fine):
        filter_factor = sorted(fine, key=lambda f: f.ValuationRatios.CashReturn, reverse=True)
        return filter_factor[:50] + filter_factor[-50:]
class Execution():
    
    def __init__(self, liq_tol):
        self.liq_tol = liq_tol
    
    def ExecutePortfolio(self, algorithm, portfolio):
        # algorithm.Log(f"Executing portfolio trades...")
        
        liquidate_securities = portfolio[abs(portfolio) < self.liq_tol].index
        holding_port = portfolio[abs(portfolio) >= self.liq_tol]
        
        self.LiquidateSecurities(algorithm, liquidate_securities)
        
        self.SetPortfolioHoldings(algorithm, holding_port)
    
    def LiquidateSecurities(self, algorithm, securities):
        liquid_count = 0
        for security in securities:
            if algorithm.Securities[security].Invested:
                algorithm.Liquidate(security)
                liquid_count += 1
        # algorithm.Log(f"Successfully liquidated {liquid_count} securities")
    
    def SetPortfolioHoldings(self, algorithm, portfolio):
        # algorithm.Log(f"Setting portfolio holdings for {len(portfolio)} securities...")
        for security, weight in portfolio.iteritems():
            algorithm.SetHoldings(security, weight)
        # algorithm.Log(f"Successfully set all holdings")
import pandas as pd
import blaze as bz 
# basically .rank(method='average')
def normalise(series, equal_ls=True):
    if equal_ls:
        series -= series.mean()
    sum = series.abs().sum()
    return series.apply(lambda x: x/sum)
    

class ValueAlphaModel():
    
    def __init__(self):
        pass
    
    def GenerateAlphaScores(self, algorithm, securities):
        algorithm.Log(f"Generating alpha scores for {len(securities)} securities...")

        fcf_y = pd.DataFrame.from_records(
            [
                {
            
                    'symbol': str(security.Symbol),
                    'fcf_y': security.ValuationRatios.CashReturn ,
                    
                    
                    
                } for security in securities
            ]).set_index('symbol')
            
        f1 = pd.DataFrame.from_records(
            [
                {
                    'symbol': str(security.Symbol),
                    'f1': str(security.FinancialStatements.BalanceSheet.Inventory.ThreeMonths)
                    
                } for security in securities
            ]).set_index('symbol')
        
            

            
        
      
        #f1 = normalise(f1['f1'])
        fcf_y['alpha_score'] = normalise(fcf_y['fcf_y'], True) #+ f1          #uncomment to see the error 
       
        
        return fcf_y
        
        
    
        """ f1 = pd.DataFrame.from_records(
            [
                {
                    'symbol': str(security.Symbol),
                    'f1': str(security.FinancialStatements.BalanceSheet.Inventory.ThreeMonth)
                } for security in securities
            ]).set_index('symbol')""" #trouble converting this into decimal values from the multiperiodtables///
from universe_selection import FactorUniverseSelectionModel
from alpha_model import ValueAlphaModel
from portfolio_construction import OptimisationPortfolioConstructionModel
from execution import Execution
from charting import InitCharts, PlotPerformanceChart, PlotPosConcentrationChart, PlotStockCountChart, PlotExposureChart

class TradingBot(QCAlgorithm):

    def Initialize(self):
        self.SetStartDate(2019, 5, 1)
        self.SetEndDate(2020,5,1)
        self.SetCash(100000)
        
        # Data resolution
        self.UniverseSettings.Resolution = Resolution.Minute
        
        # Universe selection model
        self.securities = []
        self.CustomUniverseSelectionModel = FactorUniverseSelectionModel(self)
        self.AddUniverse(self.CustomUniverseSelectionModel.SelectCoarse, self.CustomUniverseSelectionModel.SelectFine)
        
        # Alpha model
        self.CustomAlphaModel = ValueAlphaModel()
        
        # Portfolio construction model
        self.CustomPortfolioConstructionModel = OptimisationPortfolioConstructionModel(turnover=0.05, max_wt=0.05, longshort=True)#changed soon
        
        # Execution model
        self.CustomExecution = Execution(liq_tol=0.005)
        
        # Add SPY for trading days data
        self.AddEquity('SPY', Resolution.Daily)
        
        # Schedule rebalancing
        self.Schedule.On(self.DateRules.EveryDay('SPY'), self.TimeRules.At(13, 0), Action(self.RebalancePortfolio))#thisgood
        
        # Init charting
        InitCharts(self)
        
        # Schedule charting
        self.Schedule.On(self.DateRules.Every(DayOfWeek.Friday), self.TimeRules.BeforeMarketClose('SPY', 0), Action(self.PlotCharts))

    def OnData(self, data):
        pass
    
    def RebalancePortfolio(self): 
        alpha_df = self.CustomAlphaModel.GenerateAlphaScores(self, self.securities)
        portfolio = self.CustomPortfolioConstructionModel.GenerateOptimalPortfolio(self, alpha_df)
        self.CustomExecution.ExecutePortfolio(self, portfolio)
    
    def PlotCharts(self):
        PlotPerformanceChart(self)
        PlotPosConcentrationChart(self)
        PlotStockCountChart(self)
        PlotExposureChart(self)
def InitCharts(algorithm):
    performance_plot = Chart('Performance Breakdown')
    performance_plot.AddSeries(Series('Total Fees', SeriesType.Line, 0))
    performance_plot.AddSeries(Series('Total Gross Profit', SeriesType.Line, 0))
    algorithm.AddChart(performance_plot)
    
    concentration_plot = Chart('Position Concentration')
    concentration_plot.AddSeries(Series('Largest Long Position', SeriesType.Line, 0))
    concentration_plot.AddSeries(Series('Largest Short Position', SeriesType.Line, 0))
    concentration_plot.AddSeries(Series('Smallest Long Position', SeriesType.Line, 0))
    concentration_plot.AddSeries(Series('Smallest Short Position', SeriesType.Line, 0))
    algorithm.AddChart(concentration_plot)
    
    stock_count_plot = Chart('Stock Count')
    stock_count_plot.AddSeries(Series('Long', SeriesType.Line, 0))
    stock_count_plot.AddSeries(Series('Short', SeriesType.Line, 0))
    algorithm.AddChart(stock_count_plot)
    
    exposure_plot = Chart('Exposure/Leverage')
    exposure_plot.AddSeries(Series('Gross', SeriesType.Line, 0))
    exposure_plot.AddSeries(Series('Net', SeriesType.Line, 0))
    algorithm.AddChart(exposure_plot)


def PlotPerformanceChart(algorithm):
    algorithm.Plot('Performance Breakdown', 'Total Fees', algorithm.Portfolio.TotalFees)
    algorithm.Plot('Performance Breakdown', 'Total Gross Profit', algorithm.Portfolio.TotalProfit)


def PlotPosConcentrationChart(algorithm):
    long_max_val = 0
    short_max_val = 0
    long_min_val = 999999999
    short_min_val = 999999999
    for security, v in algorithm.Portfolio.items():
        if v.Invested:
            val = v.AbsoluteHoldingsValue
            if v.IsLong:
                if val > long_max_val:
                    long_max_val = val
                if val < long_min_val:
                    long_min_val = val
            elif v.IsShort:
                if val > short_max_val:
                    short_max_val = val
                if val < short_min_val:
                    short_min_val = val
            
    total_holdings = algorithm.Portfolio.TotalHoldingsValue
    long_max_pos = long_max_val / total_holdings
    short_max_pos = short_max_val / total_holdings
    long_min_pos = long_min_val / total_holdings
    short_min_pos = short_min_val / total_holdings
    algorithm.Plot('Position Concentration', 'Largest Long Position', long_max_pos)
    algorithm.Plot('Position Concentration', 'Largest Short Position', short_max_pos)
    algorithm.Plot('Position Concentration', 'Smallest Long Position', long_min_pos)
    algorithm.Plot('Position Concentration', 'Smallest Short Position', short_min_pos)


def PlotStockCountChart(algorithm):
    long_count = 0
    short_count = 0
    for security, v in algorithm.Portfolio.items():
        if v.Invested:
            val = v.AbsoluteHoldingsValue
            if v.IsLong:
                long_count += 1
            elif v.IsShort:
                short_count += 1
    
    algorithm.Plot('Stock Count', 'Long', long_count)
    algorithm.Plot('Stock Count', 'Short', short_count)


def PlotExposureChart(algorithm):
    long_val = 0
    short_val = 0
    for security, v in algorithm.Portfolio.items():
        if v.Invested:
            val = v.AbsoluteHoldingsValue
            if v.IsLong:
                long_val += val
            elif v.IsShort:
                short_val += val
    
    total_equity = algorithm.Portfolio.TotalPortfolioValue
    gross = (long_val + short_val) / total_equity
    net = (long_val - short_val) / total_equity
    algorithm.Plot('Exposure/Leverage', 'Gross', gross)
    algorithm.Plot('Exposure/Leverage', 'Net', net)