Overall Statistics |
Total Trades 1118 Average Win 0.93% Average Loss -0.83% Compounding Annual Return 11.979% Drawdown 34.000% Expectancy 0.440 Net Profit 744.240% Sharpe Ratio 0.762 Probabilistic Sharpe Ratio 9.292% Loss Rate 32% Win Rate 68% Profit-Loss Ratio 1.12 Alpha 0.112 Beta -0.033 Annual Standard Deviation 0.143 Annual Variance 0.02 Information Ratio 0.09 Tracking Error 0.23 Treynor Ratio -3.272 Total Fees $84106.67 |
import matplotlib.pyplot as plt import pandas as pd import numpy as np import pandas as pd import statsmodels.api as sm import sklearn as sk from sklearn import linear_model import math from datetime import datetime, timedelta, date from pandas.tseries.offsets import MonthEnd from dateutil.relativedelta import relativedelta from io import StringIO class FINA4803(QCAlgorithm): def Initialize(self): ### The below is required for self.History, but can't get it to work yet #historydate = datetime.date(datetime.now()) - datetime.date(datetime(1998,12,23)) #self.history_days = int(historydate.days)+1 #self.alpha_file_df = self.getRegressionCoefficients() #The alpha_file_df's first date, change accordingly # ETF beginning date is 2002/2/28, FF portfolio beginning date is 2002/1/31 self.First_Trading_Date = datetime(2002,2,28) self.Start_Date = datetime(2002, 2, 28) #Backtest period begin self.End_Date = datetime(2020,12,31) #Backtest period end - latest is last month's last day (e.g. if now is 2021/02/25, then latest is 2021/01/31) self.SetCash(1000000) #Starting Cash #Number of months between backtest period begin and the ETF's first start trading dates self.counter = (self.Start_Date.year - self.First_Trading_Date.year) * 12 + (self.Start_Date.month - self.First_Trading_Date.month) #Start Date, End Date - don't change these self.SetStartDate(self.Start_Date.year,self.Start_Date.month,self.Start_Date.day) self.SetEndDate(self.End_Date.year,self.End_Date.month,self.End_Date.day) #self.SetBrokerageModel(BrokerageName.InteractiveBrokersBrokerage, AccountType.Cash) self.Settings.FreePortfolioValuePercentage = 0.02 # Set Cash %age of Portfolio #Benchmark self.benchmark = "SPY" self.AddEquity(self.benchmark) # Add SPY for Benchmark self.SetBenchmark(self.benchmark) # Set Benchmark #Download regression results from dropbox, relevant links below: # 36 Months Rolling Alpha, Monthly Trading FF5_Against_FF_Portfolio = "https://www.dropbox.com/s/a64gl0yxgx285xl/Alphas%20-%20FF%20Portfolio%20Against%20FF5%20Factors.csv?dl=1" FF3_Against_FF_Portfolio = "https://www.dropbox.com/s/aqeqt8yag7cpydi/Alphas%20-%20FF%20Portfolio%20Against%20FF3%20Factors.csv?dl=1" FF5_Against_6_ETFs = "https://www.dropbox.com/s/cn4v6oqhvvm3g5t/Alphas%20-%206%20ETF%20Against%20FF5%20Factors.csv?dl=1" FF3_Against_6_ETFs = "https://www.dropbox.com/s/622igj5olkys3sv/Alphas%20-%206%20ETF%20Against%20FF3%20Factors.csv?dl=1" FF5_Against_9_ETFs = "https://www.dropbox.com/s/x2c915qgyjmcgpw/Alphas%20-%209%20ETFs%20Against%20FF5%20Factors.csv?dl=1" FF3_Against_9_ETFs = "https://www.dropbox.com/s/377ig3soc14oo65/Alphas%20-%209%20ETFs%20Against%20FF3%20Factors.csv?dl=1" #FF5 Against 6 ETFs, different Months Rolling Alpha, Monthly Trading FF5_Against_6_ETFs_12m = "https://www.dropbox.com/s/h76ui942e8plik7/Alphas%20-%206%20ETFs%20Against%20FF5%20Factors%20%2812m%20Rolling%20Alpha%29.csv?dl=1" FF5_Against_6_ETFs_24m = "https://www.dropbox.com/s/65e9ppia8459hw1/Alphas%20-%206%20ETFs%20Against%20FF5%20Factors%20%2824m%20Rolling%20Alpha%29.csv?dl=1" FF5_Against_6_ETFs_48m = "https://www.dropbox.com/s/dxrwn000oseusdr/Alphas%20-%206%20ETFs%20Against%20FF5%20Factors%20%2848m%20Rolling%20Alpha%29.csv?dl=1" FF5_Against_6_ETFs_60m = "https://www.dropbox.com/s/julwqwrjtx46qr0/Alphas%20-%206%20ETFs%20Against%20FF5%20Factors%20%2860m%20Rolling%20Alpha%29.csv?dl=1" alpha_file = self.Download(FF5_Against_6_ETFs) self.alpha_file_df = pd.DataFrame(pd.read_csv(StringIO(alpha_file))) self.alpha_file_df = self.alpha_file_df.rename({'Unnamed: 0':'Date'}, axis=1) #Added "Date" column name self.alpha_file_df.drop('Date', axis=1, inplace=True) #Download NBER US Reccession Index data nber_link = "https://www.dropbox.com/s/rxigxh2fi0hb8si/USREC%20%28New%29.csv?dl=1" nber_file = self.Download(nber_link) self.nber_df = pd.DataFrame(pd.read_csv(StringIO(nber_file))) self.nber_df['DATE'] = pd.to_datetime(self.nber_df['DATE']) - MonthEnd(1) #Changed dates to datetime format, added MonthEnd(1) so that the dates are consistent with the ETF's dates self.nber_df = self.nber_df.loc[self.nber_df['DATE']>=self.First_Trading_Date] self.nber_df = self.nber_df.reset_index(drop=True) #Reset Index to start from 0 self.nber_df["USREC"] = self.nber_df["USREC"].replace([0],'NO') self.nber_df["USREC"] = self.nber_df["USREC"].replace([1],'YES') #Adding tickers and safe-haven asset to portfolio self.safe_haven_status = True self.safe_haven = "GLD" tickers = ["XLB","XLE","XLF","XLI","XLK","XLP","XLU","XLV","XLY",self.safe_haven,self.benchmark] for ticker in tickers: symbol = self.AddEquity(ticker, Resolution.Daily).Symbol #Add equity to portfolio and assigns symbol self.Securities[symbol].SetDataNormalizationMode(DataNormalizationMode.TotalReturn) # Total Return adjusts the price according to the dividend received #self.Consolidate(symbol, Calendar.Monthly, self.CalendarTradeBarHandler) #Consolidates daily data into monthly data https://github.com/QuantConnect/Lean/blob/master/Algorithm.Python/DataConsolidationAlgorithm.py self.Securities[symbol].SetLeverage(1.0) #Leverage is set to 1 to ensure no margin used #Runs the self.RegressionandTrade on the last trading day each month right after market open, according to whether XLB (one of the tickers) is trading or not self.Schedule.On(self.DateRules.MonthStart("XLB"),self.TimeRules.AfterMarketOpen("XLB"),self.RegressionandTrade) #Plot Portfolio's Cash self.Schedule.On(self.DateRules.MonthEnd("XLB"),self.TimeRules.AfterMarketOpen("XLB"),self.PlotStuff) def CalendarTradeBarHandler(self, tradeBar): return def RegressionandTrade(self): self.DefaultOrderProperties.TimeInForce = TimeInForce.Day datapoint = self.alpha_file_df.iloc[[int(self.counter)]] nber_datapoint = self.nber_df.iloc[[int(self.counter)]] num_of_pos = int(datapoint.gt(0).sum(axis=1)) first_in_list = False if self.safe_haven_status == False: if nber_datapoint["USREC"].all() == "NO": for ticker in datapoint.columns: if first_in_list == False: if float(datapoint[ticker]) >0: self.SetHoldings(ticker,1/num_of_pos,True) #self.SetHoldings([PortfolioTarget(ticker, 1/num_of_pos)]) first_in_list = True elif first_in_list == True: if float(datapoint[ticker]) >0: self.SetHoldings(ticker,1/num_of_pos) #self.SetHoldings([PortfolioTarget(ticker, 1/num_of_pos)]) elif nber_datapoint["USREC"].all() == "YES": #self.SetHoldings(self.safe_haven,1,True) for ticker in datapoint.columns: if first_in_list == False: if float(datapoint[ticker]) >0: self.SetHoldings(ticker,1/num_of_pos,True) #self.SetHoldings([PortfolioTarget(ticker, 1/num_of_pos)]) first_in_list = True elif first_in_list == True: if float(datapoint[ticker]) >0: self.SetHoldings(ticker,1/num_of_pos) #self.SetHoldings([PortfolioTarget(ticker, 1/num_of_pos)]) elif self.safe_haven_status == True: if nber_datapoint["USREC"].all() == "NO": for ticker in datapoint.columns: if first_in_list == False: if float(datapoint[ticker]) >0: self.SetHoldings(ticker,1/num_of_pos,True) #self.SetHoldings([PortfolioTarget(ticker, 1/num_of_pos)]) first_in_list = True elif first_in_list == True: if float(datapoint[ticker]) >0: self.SetHoldings(ticker,1/num_of_pos) #self.SetHoldings([PortfolioTarget(ticker, 1/num_of_pos)]) elif nber_datapoint["USREC"].all() == "YES": self.SetHoldings(self.safe_haven,1,True) self.counter = self.counter+1 def Testfunct(self): #This is a test function only, feel free to modify etf_tickers = ["XLB","XLE","XLF","XLI","XLK","XLP","XLU","XLV","XLY"] for symbol in etf_tickers: self.SetHoldings(symbol, 1/len(etf_tickers)) def PlotStuff(self): self.Plot('Trade Plot', 'Cash', self.Portfolio.Cash) #Unused / Draft Functions def OnData(self, data): '''OnData event is the primary entry point for your algorithm. Each new data point will be pumped in here. Arguments: data: Slice object keyed by symbol containing the stock data ''' def getRegressionCoefficients(self): # .py version of Regression.ipynb # each qb instance is changed to self ### FF5 Factors ff5_path = self.Download("https://www.dropbox.com/s/8dyjtlyf1g4ulvn/F-F_Research_Data_5_Factors_2x3.CSV?dl=1") #Below are standard code just to modify the data: ff5_df = pd.DataFrame(pd.read_csv(StringIO(ff5_path), skiprows = 3)) #skiprows since I'm skipping the text and directly to the data ff5_df = ff5_df.rename({'Unnamed: 0':'Date'}, axis=1) #Added "Date" column name ff5_df['Date'] = pd.to_datetime(ff5_df['Date'],format='%Y%m') + MonthEnd(1) #Changed dates to datetime format, added MonthEnd(1) so that the dates are consistent with the ETF's dates ff5_df = ff5_df.loc[ff5_df['Date']>='1998-12-22'] #Cut off is 22 Dec 1998 since ETFs only have data after this date ff5_df.reset_index(drop=True,inplace=True) #Reset Index to reflect the date cutoff ff5_df.drop(ff5_df.index[:1],inplace=True) #Drops the first date since it's not required for the regression ff5_df.reset_index(drop=True,inplace=True) #Reset Index to start from 0 ff5_date = ff5_df.at[len(ff5_df)-1,'Date'] #Variable that is used later ### etf_ticker_list & history etf_ticker_list = ['XLB', 'XLE', 'XLF', 'XLI', 'XLK', 'XLP', 'XLU', 'XLV', 'XLY'] #etf ticker list, doesn't change self.history_df = {} for ticker in etf_ticker_list: ticker_symbol = self.AddEquity(ticker).Symbol #QuantConnect's way of adding securities. The securities will be added to self.Securities self.Securities[ticker_symbol].SetDataNormalizationMode(DataNormalizationMode.TotalReturn) #This adjusts the price data so that all the prices have dividends reinvested and splits are adjusted self.history_df[ticker] = self.History(ticker_symbol,self.history_days,Resolution.Daily) startDate = datetime(2019,12,22) #First trading dates of all of the ETFs endDate = datetime(ff5_date.year, ff5_date.month, ff5_date.day) #Taken from a variable that is defined in the previous cell #self.history_df = self.History([self.Securities.Keys],timedelta(days=self.history_days),Resolution.Daily) #tester = True #while tester == True: #if self.history_df["XLB"].empty == True: #pass #elif self.history_df["XLB"].empty == False: #tester=False ticker_data = {} ### close_prices close_prices={} #modifies the dataframe above into a dictionary containing each ETF's closing price for ticker in etf_ticker_list: close_prices[ticker] = self.history_df[ticker]["close"] ### close_prices_monthly close_prices_monthly = {} #changes daily closing data into monthly using resample for ticker in close_prices: close_prices_monthly[ticker] = pd.DataFrame(close_prices[ticker].resample("1M").last()) #simply takes the last trading price of each month close_prices_monthly[ticker]['Price Change'] = close_prices_monthly[ticker]['close'].pct_change(periods = 1) #price change from each month close_prices_monthly[ticker]['Price Change'] = close_prices_monthly[ticker]['Price Change'].fillna(0) #fills NaN's data with 0 (there shouldn't be any NaNs, but just in case) close_prices_monthly[ticker]['Price Change'] = close_prices_monthly[ticker]['Price Change']*100 #multiply by 100 so it's consistent with Fama French's RF close_prices_monthly[ticker].drop(close_prices_monthly[ticker].index[:1],inplace=True) #drops the first datapoint, since we can't find the price change because it's the first trading month close_prices_monthly[ticker]["Price Change - RF"] = close_prices_monthly[ticker]['Price Change'] - ff5_df["RF"].values ### etf_alphas etf_alphas = {} #dictionary to store the alphas (or intercepts) of each ETF, regressed with Fama French's 5 factors for ticker in etf_ticker_list: counter = 0 counter1 = 36 #counters are 0 to 36 (36 months worth of data is regressed) etf_alphas[ticker] = pd.DataFrame() placeholder = [] while counter1 < len(close_prices_monthly[ticker].index): #Runs the while loop as long as data is available X = ff5_df[['Mkt-RF','SMB','HML','RMW','CMA']].iloc[counter:counter1,] #Dependent variable, which are Fama French's 5 factors Y = close_prices_monthly[ticker]["Price Change - RF"].iloc[counter:counter1,] #Independent variable regr = linear_model.LinearRegression() regr.fit(X,Y) placeholder.append(regr.intercept_) counter = counter+1 counter1 = counter1+1 etf_alphas[ticker][ticker] = placeholder ### combined_etf_alpha #Basically combines all of the etf_alphas dictionary into one dataframe combined_etf_alpha = pd.DataFrame() for ticker in etf_ticker_list: combined_etf_alpha = pd.concat([combined_etf_alpha,etf_alphas[ticker]],axis=1) #The below is probably bad practice since I set my own dates #It starts at 2002/02/28, since the data begins from 1999/01/31 + 36 months (3 years) = 2002/01/31 (call this date t) #This signal is practically only generated during t+1 month, that's why I began at 2002/02/28. combined_etf_alpha = combined_etf_alpha.set_index(pd.date_range(start='2/28/2002', periods=len(etf_alphas["XLE"]),freq="M"),"Trading Dates") return combined_etf_alpha