Overall Statistics |
Total Trades 45 Average Win 10.26% Average Loss -0.45% Compounding Annual Return 14.082% Drawdown 12.300% Expectancy 19.689 Net Profit 509.548% Sharpe Ratio 1.359 Loss Rate 14% Win Rate 86% Profit-Loss Ratio 22.96 Alpha 0.08 Beta 2.847 Annual Standard Deviation 0.101 Annual Variance 0.01 Information Ratio 1.161 Tracking Error 0.101 Treynor Ratio 0.048 Total Fees $597.85 |
import pandas as pd import numpy as np from datetime import timedelta ### <summary> ### Basic template algorithm simply initializes the date range and cash. This is a skeleton ### framework you can use for designing an algorithm. ### </summary> class BasicTemplateAlgorithm(QCAlgorithm): '''Basic template algorithm simply initializes the date range and cash''' def Initialize(self): '''Initialise the data and resolution required, as well as the cash and start-end dates for your algorithm. All algorithms must initialized.''' self.SetBrokerageModel(BrokerageName.InteractiveBrokersBrokerage) self.SetBenchmark("SPY") self.SetStartDate(2004,12, 1) #Set Start Date self.SetEndDate(2018,8,18) #Set End Date self.SetCash(100000) #Set Strategy Cash self.equity = ['SPY', 'IEF'] self.months = {} # Find more symbols here: http://quantconnect.com/data self.AddEquity(self.equity[0], Resolution.Hour) self.AddEquity(self.equity[1], Resolution.Hour) self.google_trends = pd.DataFrame(columns=['Week', 'interest']) self.file = self.Download("https://www.dropbox.com/s/lzah401ulb8cdba/debtMonthly.csv?dl=1") self.file = self.file.split("\n") i = 0 for row in self.file[1:]: one_row = row.split(",") self.google_trends.loc[i] = one_row i += 1 self.google_trends["MA3"] = self.google_trends.interest.rolling(3).mean() self.google_trends["MA18"] = self.google_trends.interest.rolling(18).mean() self.google_trends["Signal"] = self.google_trends["MA3"].astype('float') - self.google_trends["MA18"].astype('float') self.google_trends["Signal"] = self.google_trends["Signal"].shift(1) def OnData(self, data): '''OnData event is the primary entry point for your algorithm. Each new data point will be pumped in here. Arguments: data: Slice object keyed by symbol containing the stock data ''' date_today = self.Time.date() date_today = date_today.strftime(format='%Y-%m-%d') date_today = date_today[0:7] signal = self.google_trends.loc[self.google_trends.Week == date_today,"Signal"].iloc[0] try: invested = self.months[date_today] except: invested = "No" if self.Time.hour == 15 and invested == "No": if self.Portfolio[self.equity[0]].Quantity > 0 and signal > 0: self.Liquidate(self.equity[0]) if self.Portfolio[self.equity[1]].Quantity > 0 and signal < 0: self.Liquidate(self.equity[1]) if signal < 0 and self.Portfolio[self.equity[0]].Quantity == 0: self.SetHoldings(self.equity[0], 1) self.months[date_today] = "Yes" return if signal > 0 and self.Portfolio[self.equity[1]].Quantity == 0: self.SetHoldings(self.equity[1], 1) self.months[date_today] = "Yes" return