Overall Statistics |
Total Trades 434 Average Win 0.13% Average Loss -0.03% Compounding Annual Return 10.089% Drawdown 25.000% Expectancy 3.779 Net Profit 78.094% Sharpe Ratio 0.847 Probabilistic Sharpe Ratio 31.771% Loss Rate 2% Win Rate 98% Profit-Loss Ratio 3.90 Alpha 0.075 Beta 0.244 Annual Standard Deviation 0.13 Annual Variance 0.017 Information Ratio -0.188 Tracking Error 0.185 Treynor Ratio 0.453 Total Fees $5844.62 |
import numpy as np syms = ['NXN', 'INSI', 'BKT'] class MultidimensionalModulatedRegulators(QCAlgorithm): def Initialize(self): self.SetStartDate(2015, 1, 1) self.SetCash(1000000) self.SetExecution(VolumeWeightedAveragePriceExecutionModel()) self.symbols = [] for i in range(len(syms)): self.symbols.append(Symbol.Create(syms[i], SecurityType.Equity, Market.USA)) self.Debug(syms[i]) self.SetUniverseSelection( ManualUniverseSelectionModel(self.symbols) ) self.UniverseSettings.Resolution = Resolution.Hour self.AddEquity('SPY', Resolution.Hour) self.SetBenchmark('SPY') self.SetBrokerageModel(AlphaStreamsBrokerageModel()) self.constant_weights = np.array([0.09424385, 0.21781130, 0.68794489]) self.constant_weights /= np.sum(np.abs(self.constant_weights)) self.leverage = 1.9 def OnData(self, data): rebalance = False if self.Portfolio.TotalHoldingsValue > 0: total = 0.0 for i, sym in enumerate(self.symbols): curr = (self.Securities[sym].Holdings.HoldingsValue/self.Portfolio.TotalHoldingsValue) diff = self.constant_weights[i] - curr total += np.abs(diff) if total > 0.01: rebalance = True if rebalance or (not self.Portfolio.Invested): for i, sym in enumerate(self.symbols): if self.constant_weights[i] != 0: self.SetHoldings(sym, self.constant_weights[i] * self.leverage)