Overall Statistics |
Total Trades 5 Average Win 2.96% Average Loss 0% Compounding Annual Return 24.893% Drawdown 14.000% Expectancy 0 Net Profit 12.956% Sharpe Ratio 1.219 Probabilistic Sharpe Ratio 53.217% Loss Rate 0% Win Rate 100% Profit-Loss Ratio 0 Alpha 0.267 Beta -0.132 Annual Standard Deviation 0.178 Annual Variance 0.032 Information Ratio -0.604 Tracking Error 0.265 Treynor Ratio -1.642 Total Fees $7.45 |
from datetime import timedelta import numpy as np from scipy import stats from collections import deque class ModulatedMultidimensionalReplicator(QCAlgorithm): def Initialize(self): self.SetStartDate(2020, 6, 1) # Set Start Date self.SetCash(100000) # Set Strategy Cash self.AddAlpha(MOMAlphaModel()) self.SetPortfolioConstruction(EqualWeightingPortfolioConstructionModel()) self.AddEquity('GLD', Resolution.Daily) self.AddEquity('QQQ', Resolution.Daily) def OnData(self, data): '''OnData event is the primary entry point for your algorithm. Each new data point will be pumped in here. Arguments: data: Slice object keyed by symbol containing the stock data ''' # if not self.Portfolio.Invested: # self.SetHoldings("SPY", 1) class MOMAlphaModel(AlphaModel): def __init__(self): self.mom = {} self.indicator = True def OnSecuritiesChanged(self, algorithm, changes): for security in changes.AddedSecurities: symbol = security.Symbol self.mom[symbol] = My_Custom('My_Custom', symbol, 100) algorithm.RegisterIndicator(symbol, self.mom[symbol], Resolution.Daily) history = algorithm.History(symbol, 100, Resolution.Daily) self.mom[symbol].Warmup(history) if not self.mom[symbol]: self.indicator = False def Update(self, algorithm, data): insights = [] # plot the indicator algorithm.Plot("Custom_Slope", "Value", list(self.mom.values())[0].Value ) if self.indicator == True: ordered = sorted(self.mom.items(), key=lambda x: x[1].Value, reverse=True)[:1] for x in ordered: symbol = x[0] insights.append( Insight.Price(symbol, timedelta(1), InsightDirection.Up) ) return insights # Python implementation of Custom Indicator class My_Custom: def __init__(self, name, symbol, period): self.symbol = symbol self.Name = name self.Time = datetime.min self.Value = 0 self.queue = deque(maxlen=period) self.IsReady = False # Update method is mandatory def Update(self, input): return self.Update2(input.Time, input.Close) def Update2(self, time, value): self.queue.appendleft(value) count = len(self.queue) self.Time = time self.IsReady = count == self.queue.maxlen #### start here the indicator calulation if self.IsReady: y = np.log(self.queue) x = [range(len(y))] slope = stats.linregress(x, y)[0] self.Value = slope * 10000 # value is very small an will display 0 if not multiplyed #### finish the custom indicator # for testing self.IsReady = False self.IsReady = False return self.IsReady def Warmup(self,history): for index, row in history.loc[self.symbol].iterrows(): self.Update2(index, row['close'])