Overall Statistics |
Total Trades 328 Average Win 3.45% Average Loss -3.22% Compounding Annual Return 8.458% Drawdown 15.200% Expectancy 0.187 Net Profit 107.753% Sharpe Ratio 0.734 Probabilistic Sharpe Ratio 16.490% Loss Rate 43% Win Rate 57% Profit-Loss Ratio 1.07 Alpha 0.074 Beta 0.005 Annual Standard Deviation 0.102 Annual Variance 0.01 Information Ratio -0.374 Tracking Error 0.18 Treynor Ratio 14.015 Total Fees $10886.87 Estimated Strategy Capacity $2300000.00 Lowest Capacity Asset EWA R735QTJ8XC9X |
from scipy.stats import linregress class EMAMomentumUniverse(QCAlgorithm): def Initialize(self): # Define backtest window and portfolio cash self.SetStartDate(2012, 6, 10) self.SetEndDate(2021, 6, 9) self.SetCash(100000) # Add the assets to be fed into the algorithm and save the symbol objects (to be referred later) self.asset1 = self.AddEquity('EWA', Resolution.Daily).Symbol self.asset2 = self.AddEquity('EWC', Resolution.Daily).Symbol # We then create a bollinger band with 120 steps for lookback period self.bb = BollingerBands(220, 0.5, MovingAverageType.Simple) # Define the objectives when going long or going short (long=buy asset 2 and sell asset 1) (short=sell asset 1 and buy asset 2) self.long_targets = [PortfolioTarget(self.asset2, 0.9), PortfolioTarget(self.asset1, -0.9)] self.short_targets = [PortfolioTarget(self.asset2, -0.9), PortfolioTarget(self.asset1, 0.9)] self.is_invested = None # set the starting flag as not invested self.rebalance_daily = False # indicate if the portfolio should be rebalanced daily to meet the hedge ratio self.lookback = 220 # set the look back period to calculate the linear regression and find the hedge ratio def OnData(self, data): # for daily bars data is delivered at 00:00 of the day containing the closing price of the previous day (23:59:59) if (not data.Bars.ContainsKey(self.asset1)) or (not data.Bars.ContainsKey(self.asset2)): return # As we need a dataframe, we will use the history function, as we did in the research notebook history = self.History([self.asset1, self.asset2], self.lookback, Resolution.Daily) history = history.unstack(level=0).dropna() # Plotting for debugging reasons # self.Debug(f'System Time: {self.Time}') # self.Debug(f'history index: {history.index}') # self.Debug(f'history columns: {history.columns}') # self.Debug(f'Last price asset 1: {data[self.asset1].Close}') # self.Debug(history) asset1 = history['close', self.asset1.Value] asset2 = history['close', self.asset2.Value] reg = linregress(asset1, asset2) portfolio = data[self.asset2].Close - data[self.asset1].Close * reg.slope - reg.intercept self.bb.Update(self.Time, float(portfolio)) # Plot the portfolio (to see if it is working, and the bb bands) self.Plot("Indicators", "Portfolio", float(portfolio)) self.Plot("Indicators", "Middle", self.bb.MiddleBand.Current.Value) self.Plot("Indicators", "Upper", self.bb.UpperBand.Current.Value) self.Plot("Indicators", "Lower", self.bb.LowerBand.Current.Value) self.Plot("Arguments", "Hedge", float(reg.slope)) self.Plot("Arguments", "Intercept", float(reg.intercept)) # check if the bolllinger band indicator is ready (filled with 120 steps) # if not self.bb.IsReady: # return upper_band = self.bb.UpperBand.Current.Value lower_band = self.bb.LowerBand.Current.Value middle_band = self.bb.MiddleBand.Current.Value #upper_band = 0.25 #lower_band = -0.25 #middle_band = 0 # Now that we have all values that we need, and the indicator is ready, let's attach the trading mechanism # if it is not invested, see if there is an entry point if not self.is_invested: # if our portfolio is bellow the lower band, enter long if portfolio < lower_band: self.SetHoldings(self.long_targets) self.Debug('Entering Long') self.is_invested = 'long' # if our portfolio is above the upper band, go short if portfolio > upper_band: self.SetHoldings(self.short_targets) self.Debug('Entering Short') self.is_invested = 'short' # if it is invested in something, check the exiting signal (when it crosses the mean) else: if self.is_invested == 'long' and portfolio > middle_band: self.Liquidate() self.Debug('Exiting Long') self.is_invested = None elif self.is_invested == 'short' and portfolio < middle_band: self.Liquidate() self.Debug('Exiting Short') self.is_invested = None # if there is no exit signal, rebalance if it is the case elif self.rebalance_daily: targets = self.long_targets if self.is_invested == 'long' else self.short_targets self.SetHoldings(targets)