Overall Statistics |
Total Trades 4364 Average Win 0.62% Average Loss -0.29% Compounding Annual Return 85.602% Drawdown 50.900% Expectancy 0.599 Net Profit 2452.129% Sharpe Ratio 1.732 Probabilistic Sharpe Ratio 72.263% Loss Rate 49% Win Rate 51% Profit-Loss Ratio 2.13 Alpha 0.56 Beta 2.42 Annual Standard Deviation 0.524 Annual Variance 0.275 Information Ratio 1.887 Tracking Error 0.405 Treynor Ratio 0.375 Total Fees $12316.95 Estimated Strategy Capacity $150000.00 |
from QuantConnect.Data.UniverseSelection import * import pandas as pd import numpy as np class EnhancedShortTermMeanReversionAlgorithm(QCAlgorithm): def Initialize(self): self.SetStartDate(2016, 1, 1) #Set Start Date #self.SetEndDate(2018, 1, 27) #Set Start Date self.SetCash(50000) #Set Strategy Cash self.security = "AAPL" self.AddEquity(self.security, Resolution.Minute) # rebalance the universe selection once a month self.rebalence_flag = 0 # make sure to run the universe selection at the start of the algorithm even it's not the manth start self.first_month_trade_flag = 1 self.trade_flag = 0 # Number of quantiles for sorting returns for mean reversion self.nq = 7 # Number of quantiles for sorting volatility over five-day mean reversion period self.nq_vol = 7 # the symbol list after the coarse and fine universe selection self.universe = None self.down_trend = False self.Insights_Store = [] # Universe Settings #--------------------------------------------------------------------------------------- self.UniverseSettings.Resolution = Resolution.Minute self.UniverseSettings.ExtendedMarketHours = False self.UniverseSettings.Leverage = 2 #--------------------------------------------------------------------------------------- # Algorithm Framework Configuration #--------------------------------------------------------------------------------------- self.AddUniverse(self.CoarseSelectionFunction, self.FineSelectionFunction) self.SetPortfolioConstruction(MyPCM()) self.SetExecution(ImmediateExecutionModel()) self.SetRiskManagement(NullRiskManagementModel()) # self.SetRiskManagement(TrailingStopRiskManagementModel()) #--------------------------------------------------------------------------------------- # Algorithm Schedules #--------------------------------------------------------------------------------------- time = 15 self.Schedule.On(self.DateRules.MonthStart(self.security), self.TimeRules.At(0, 0), Action(self.monthly_rebalance)) self.Schedule.On(self.DateRules.EveryDay(self.security), self.TimeRules.At(time, 9), Action(self.can_trade)) self.Schedule.On(self.DateRules.WeekStart(self.security), self.TimeRules.At(time, 10), Action(self.get_prices)) self.Schedule.On(self.DateRules.WeekStart(self.security), self.TimeRules.At(time, 11), Action(self.daily_rebalance)) self.Schedule.On(self.DateRules.WeekStart(self.security), self.TimeRules.At(time, 12), Action(self.short)) self.Schedule.On(self.DateRules.WeekStart(self.security), self.TimeRules.At(time, 13), Action(self.long)) #--------------------------------------------------------------------------------------- def monthly_rebalance(self): # rebalance the universe every month self.rebalence_flag = 1 def CoarseSelectionFunction(self, coarse): if self.rebalence_flag or self.first_month_trade_flag: # drop stocks which have no fundamental data or have too low prices selected = [x for x in coarse if (x.HasFundamentalData) and (float(x.Price) > 5)] # rank the stocks by dollar volume and choose the top 50 filtered = sorted(selected, key=lambda x: x.DollarVolume, reverse=True) return [ x.Symbol for x in filtered[:50]] else: return self.universe def can_trade(self): security = "SPY" self.AddEquity(security) # self.AddEquity(security_VXX) spy = self.History([security], 30, Resolution.Daily) roll = 20 spy_roll_mean = (spy.loc[security]['close'][-roll:].mean()) if spy.loc[security]['close'][-1] < spy_roll_mean: for symbol in self.Portfolio.Keys: symbol = symbol self.Insights_Store.append(Insight.Price(symbol, timedelta(999), InsightDirection.Flat, None, None, None, 1)) self.down_trend = True else: self.down_trend = False # self.SetHoldings(security_VXX,0) self.RemoveSecurity(security) # self.RemoveSecurity(security_VXX) def FineSelectionFunction(self, fine): if self.rebalence_flag or self.first_month_trade_flag: # filter the stocks which have positive EV To EBITDA filtered_fine = [x for x in fine if x.ValuationRatios.EVToEBITDA > 0 and x.AssetClassification.MorningstarSectorCode == MorningstarSectorCode.Technology] self.universe = [x.Symbol for x in filtered_fine] self.rebalence_flag = 0 self.first_month_trade_flag = 0 self.trade_flag = 1 return self.universe def OnData(self, data): pass def short(self): if self.down_trend == True: return if self.universe is None: return SPY_Velocity = 0 self.long_leverage = 0 self.short_leverage = 0 # request the history of benchmark pri = self.History([self.security], 200, Resolution.Daily) pos_one = (pri.loc[self.security]['close'][-1]) pos_six = (pri.loc[self.security]['close'][-75:].mean()) # calculate velocity of the benchmark velocity_stop = (pos_one - pos_six)/100.0 SPY_Velocity = velocity_stop if SPY_Velocity > 0.0: self.long_leverage = 1 self.short_leverage = 0 else: self.long_leverage = 0.5 self.short_leverage = 0.5 for symbol in self.shorts: if len(self.shorts) + self.existing_shorts == 0: return self.AddEquity(symbol, Resolution.Minute) self.Insights_Store.append(Insight.Price(symbol, timedelta(999), InsightDirection.Down, None, None, None, self.short_leverage)) def long(self): if self.down_trend == True: return if self.universe is None: return for symbol in self.longs: if len(self.longs) + self.existing_longs == 0: return self.AddEquity(symbol, Resolution.Minute) self.Insights_Store.append(Insight.Price(symbol, timedelta(999), InsightDirection.Up, None, None, None, self.long_leverage)) self.EmitInsights(Insight.Group(self.Insights_Store)) self.Insights_Store = [] def get_prices(self): if self.universe is None: return # Get the last 6 days of prices for every stock in our universe prices = {} hist = self.History(self.universe, 14, Resolution.Daily) for i in self.universe: if str(i) in hist.index.levels[0]: prices[i.Value] = hist.loc[str(i)]['close'] df_prices = pd.DataFrame(prices, columns = prices.keys()) # calculate the daily log return daily_rets = np.log(df_prices/df_prices.shift(1)) # calculate the latest return but skip the most recent price rets = (df_prices.iloc[-2] - df_prices.iloc[0]) / df_prices.iloc[0] # standard deviation of the daily return stdevs = daily_rets.std(axis = 0) self.ret_qt = pd.qcut(rets, 5, labels=False) - 1 self.stdev_qt = pd.qcut(stdevs, 3, labels=False) -1 self.longs = list((self.ret_qt[self.ret_qt == 1].index) & (self.stdev_qt[self.stdev_qt < 2].index)) self.shorts = list((self.ret_qt[self.ret_qt == self.nq].index) & (self.stdev_qt[self.stdev_qt < 2].index)) def daily_rebalance(self): if self.down_trend == True: return # rebalance the position in portfolio every day if self.universe is None: return self.existing_longs = 0 self.existing_shorts = 0 for symbol in self.Portfolio.Keys: if (symbol.Value != self.security) and (symbol.Value in self.ret_qt.index): current_quantile = self.ret_qt.loc[symbol.Value] if self.Portfolio[symbol].Quantity > 0: if (current_quantile == 1) and (symbol not in self.longs): self.existing_longs += 1 elif (current_quantile > 1) and (symbol not in self.shorts): self.Insights_Store.append(Insight.Price(symbol, timedelta(999), InsightDirection.Flat, None, None, None, 1)) elif self.Portfolio[symbol].Quantity < 0: if (current_quantile == self.nq) and (symbol not in self.shorts): self.existing_shorts += 1 elif (current_quantile < self.nq) and (symbol not in self.longs): self.Insights_Store.append(Insight.Price(symbol, timedelta(999), InsightDirection.Flat, None, None, None, 1)) class MyPCM(EqualWeightingPortfolioConstructionModel): leverage = 1 def CreateTargets(self, algorithm, insights): targets = super().CreateTargets(algorithm, insights) return [PortfolioTarget(x.Symbol, x.Quantity*(1+self.leverage)) for x in targets]