Overall Statistics |
Total Trades 1211 Average Win 1.04% Average Loss -0.93% Compounding Annual Return 9.059% Drawdown 16.200% Expectancy 0.191 Net Profit 173.351% Sharpe Ratio 0.71 Loss Rate 44% Win Rate 56% Profit-Loss Ratio 1.12 Alpha 0.015 Beta 4.034 Annual Standard Deviation 0.135 Annual Variance 0.018 Information Ratio 0.562 Tracking Error 0.135 Treynor Ratio 0.024 Total Fees $4767.73 |
import decimal as d from datetime import datetime, timedelta from decimal import Decimal import calendar """ class MyAlgo(QCAlgorithm): def Initialize(self): AddEquity("SPY") self.Schedule.On(self.DateRules.Every(DayOfWeek.Monday, DayOfWeek.Monday), \ self.TimeRules.AfterMarketOpen(self.spy), \ Action(self.open_positions)) self.Schedule.On(self.DateRules.Every(DayOfWeek.Friday, DayOfWeek.Friday), \ self.TimeRules.BeforeMarketClose(self.spy, 30), \ Action(self.close_positions)) def open_positions(self): self.SetHoldings("SPY", 0.10) def close_positions(self): self.Liquidate("SPY") """ class VigilantAssetAllocationAlgorithm(QCAlgorithm): def Initialize(self): self.SetCash(25000) self.SetStartDate(2007, 1, 1) self.LastRotationTime = datetime.min self.RotationInterval = timedelta(days=1) self.first = True # these are the growth symbols we'll rotate through GrowthSymbols = ["SPY", "EFA", "EEM", "AGG"] # these are the safety symbols we go to when things are looking bad for growth SafetySymbols = ["LQD", "IEF", "SHY"] # I split the indicators into two different sets to make it easier for illustrative purposes below. # Storing all risky asset data into SymbolData object self.SymbolData = [] for symbol in list(GrowthSymbols): self.AddSecurity(SecurityType.Equity, symbol, Resolution.Minute) self.oneMonthPerformance = self.MOMP(symbol, 21, Resolution.Daily) self.threeMonthPerformance = self.MOMP(symbol, 63, Resolution.Daily) self.sixMonthPerformance = self.MOMP(symbol, 126, Resolution.Daily) self.twelveMonthPerformance = self.MOMP(symbol, 252, Resolution.Daily) self.SymbolData.append([symbol, self.oneMonthPerformance, self.threeMonthPerformance, self.sixMonthPerformance, self.twelveMonthPerformance]) # Storing all risk-free data into SafetyData object self.SafetyData = [] for symbol in list(SafetySymbols): self.AddSecurity(SecurityType.Equity, symbol, Resolution.Minute) self.oneMonthPerformance = self.MOMP(symbol, 21, Resolution.Daily) self.threeMonthPerformance = self.MOMP(symbol, 63, Resolution.Daily) self.sixMonthPerformance = self.MOMP(symbol, 126, Resolution.Daily) self.twelveMonthPerformance = self.MOMP(symbol, 252, Resolution.Daily) self.SafetyData.append([symbol, self.oneMonthPerformance, self.threeMonthPerformance, self.sixMonthPerformance, self.twelveMonthPerformance]) self.Schedule.On(self.DateRules.WeekEnd("SPY"), self.TimeRules.AfterMarketOpen("SPY", 10), self.Rebalance) self.rebalance = True def OnData(self, data): if self.first: self.first = False #self.LastRotationTime = self.Time return #delta = self.Time - self.LastRotationTime #if delta > self.RotationInterval: if self.rebalance == True: #self.LastRotationTime = self.Time ##Using the Score class at the bottom, compute the score for each risky asset. ##This approach overweights the front month momentum value and progressively underweights older momentum values #currentHoldings = all_symbols = [ x for x in self.Portfolio.Keys ] orderedObjScores = sorted(self.SymbolData, key=lambda x: Score(x[1].Current.Value,x[2].Current.Value,x[3].Current.Value,x[4].Current.Value).ObjectiveScore(), reverse=True) ##Using the Score class at the bottom, compute the score for each risk-free asset. orderedSafeScores = sorted(self.SafetyData, key=lambda x: Score(x[1].Current.Value,x[2].Current.Value,x[3].Current.Value,x[4].Current.Value).ObjectiveScore(), reverse=True) ##Count the number of risky assets with negative momentum scores and store in N. If all four of the offensive assets exhibit positive momentum scores, ##select the offensive asset with the highest score and allocate 100% of the portfolio to that asset at the close N = 0 for x in orderedObjScores: self.Log(">>SCORE>>" + x[0] + ">>" + str(Score(x[1].Current.Value,x[2].Current.Value,x[3].Current.Value,x[4].Current.Value).ObjectiveScore())) if Score(x[1].Current.Value,x[2].Current.Value,x[3].Current.Value,x[4].Current.Value).ObjectiveScore() < 0: N += 1 # pick which one is best from risky and risk-free symbols and store for use below bestGrowth = orderedObjScores[0] secondGrowth = orderedObjScores[1] bestSafe = orderedSafeScores[0] secondSafe = orderedSafeScores[1] ## If any of the four risky assets exhibit negative momentum scores, select the risk-free asset (LQD, IEF or SHY) with the highest score ## (regardless of whether the score is > 0) and allocate 100% of the portfolio to that asset at the close. if N > 0: self.Log("PREBUY>>LIQUIDATE>>") self.Liquidate() self.Log(">>BUY>>" + str(bestSafe[0]) + "@" + str(Decimal(100) * bestSafe[1].Current.Value)) self.SetHoldings(bestSafe[0], 1) #self.SetHoldings(currentHoldings[0], .75) #self.SetHoldings(secondSafe[0], .5) self.rebalance = False else: self.Log("PREBUY>>LIQUIDATE>>") self.Liquidate() self.Log(">>BUY>>" + str(bestGrowth[0]) + "@" + str(Decimal(100) * bestGrowth[1].Current.Value)) self.SetHoldings(bestGrowth[0], 1) #self.SetHoldings(currentHoldings, .75) #self.SetHoldings(secondGrowth[0], .5) self.rebalance = False def Rebalance(self): self.rebalance = True self.Debug("Rebalance") class Score(object): def __init__(self,oneMonthPerformanceValue,threeMonthPerformanceValue,sixMonthPerformanceValue,twelveMonthPerformanceValue): self.oneMonthPerformance = oneMonthPerformanceValue self.threeMonthPerformance = threeMonthPerformanceValue self.sixMonthPerformance = sixMonthPerformanceValue self.twelveMonthPerformance = twelveMonthPerformanceValue def ObjectiveScore(self): weight1 = 12 weight2 = 4 weight3 = 2 return (weight1 * self.oneMonthPerformance) + (weight2 * self.threeMonthPerformance) + (weight3 * self.sixMonthPerformance) + self.twelveMonthPerformance