Overall Statistics |
Total Trades 255 Average Win 14.79% Average Loss -4.71% Compounding Annual Return 67.339% Drawdown 70.700% Expectancy 1.639 Net Profit 131691.248% Sharpe Ratio 1.322 Probabilistic Sharpe Ratio 59.465% Loss Rate 36% Win Rate 64% Profit-Loss Ratio 3.14 Alpha 0.569 Beta -0.136 Annual Standard Deviation 0.421 Annual Variance 0.178 Information Ratio 1.012 Tracking Error 0.462 Treynor Ratio -4.084 Total Fees $5317.12 Estimated Strategy Capacity $8100000.00 Lowest Capacity Asset TLT SGNKIKYGE9NP |
import numpy as np # ------------------------------------------------------------------------------------------- STOCKS = ['BTCUSD','ETHUSD']; BONDS = ['TLT']; VOLA = 126; BASE_RET = 85; LEV = 0.99; NSTOCKS=1; MOMLOOK=15; REBA=2; CAPITALE=25000 # ------------------------------------------------------------------------------------------- #NO XLF, XLP iyz ---------------------- ,'XLE','XLP','IYR','VNQI','XLI','XLF','XLU','XLY','XLV','IWM', #IYZ telecom; XLE energy;IYR us real estate VNQI global real; XLI industrials; XLF financials; XLU utilities #XLY consumer discretionari; GDX materials; XLV healthcare e biotech; IWM small cap; PBW clean energy 'SMH','IGV','FDN' class ROC_Comparison_IN_OUT(QCAlgorithm): def Initialize(self): self.SetStartDate(2008, 1, 1) self.cap = CAPITALE self.SetCash(self.cap) self.STOCKS = [self.AddCrypto(ticker, Resolution.Daily).Symbol for ticker in STOCKS] self.mom_lookback = MOMLOOK self.stock_selection = None self.ret_reb_month = 0 self.rebalance_counter = 0 self.rebalance_interval = REBA self.BONDS = [self.AddEquity(ticker, Resolution.Minute).Symbol for ticker in BONDS] self.ASSETS = [self.STOCKS, self.BONDS] self.SLV = self.AddEquity('SLV', Resolution.Daily).Symbol self.GLD = self.AddEquity('GLD', Resolution.Daily).Symbol self.XLI = self.AddEquity('XLI', Resolution.Daily).Symbol self.XLU = self.AddEquity('XLU', Resolution.Daily).Symbol self.DBB = self.AddEquity('DBB', Resolution.Daily).Symbol self.UUP = self.AddEquity('UUP', Resolution.Daily).Symbol self.MKT = self.AddEquity('SPY', Resolution.Daily).Symbol self.pairs = [self.SLV, self.GLD, self.XLI, self.XLU, self.DBB, self.UUP] self.bull = 1 self.count = 0 self.outday = 0 self.wt = {} self.real_wt = {} self.mkt = [] self.SetWarmUp(timedelta(350)) self.Schedule.On(self.DateRules.EveryDay(), self.TimeRules.AfterMarketOpen('SPY', 60), self.daily_check) self.Schedule.On(self.DateRules.EveryDay(), self.TimeRules.AfterMarketOpen('SPY', 120), self.trade) symbols = [self.MKT] + self.pairs + self.STOCKS + self.BONDS for symbol in symbols: self.consolidator = TradeBarConsolidator(timedelta(days=1)) self.consolidator.DataConsolidated += self.consolidation_handler self.SubscriptionManager.AddConsolidator(symbol, self.consolidator) self.history = self.History(symbols, VOLA + 1, Resolution.Daily) if self.history.empty or 'close' not in self.history.columns: return self.history = self.history['close'].unstack(level=0).dropna() def consolidation_handler(self, sender, consolidated): self.history.loc[consolidated.EndTime, consolidated.Symbol] = consolidated.Close self.history = self.history.iloc[-(max(VOLA, self.mom_lookback)+1):] def daily_check(self): vola = self.history[[self.MKT]].iloc[-(VOLA+1):].pct_change().std() * np.sqrt(252) wait_days = int(vola * BASE_RET) period = int((1 - vola) * BASE_RET) r = self.history.pct_change(period).iloc[-1] exit = ((r[self.SLV] < r[self.GLD]) and (r[self.XLI] < r[self.XLU]) and (r[self.DBB] < r[self.UUP])) if exit: self.bull = 0 self.outday = self.count if self.count >= self.outday + wait_days: self.bull = 1 self.count += 1 def trade(self): ### MOD Flex 27.04.2021 ### #if self.ret_reb_month!=self.Time.month: # self.stock_selection = self.calc_return(self.STOCKS, 1) # self.ret_reb_month = self.Time.month if self.rebalance_counter == 0 or self.rebalance_counter >= self.rebalance_interval: if self.rebalance_counter == 0: self.rebalance_counter += 1 else: self.rebalance_counter = 1 self.stock_selection = self.calc_return(self.STOCKS, NSTOCKS) else: self.rebalance_counter += 1 ### MOD Flex 27.04.2021 ### for sec in self.STOCKS: self.wt[sec] = LEV/len(self.stock_selection) if self.bull and (sec in self.stock_selection) else 0; for sec in self.BONDS: self.wt[sec] = 0 if self.bull else LEV/len(self.BONDS); for sec, weight in self.wt.items(): if weight == 0 and self.Portfolio[sec].IsLong: self.Liquidate(sec) cond1 = weight == 0 and self.Portfolio[sec].IsLong cond2 = weight > 0 and not self.Portfolio[sec].Invested if cond1 or cond2: self.SetHoldings(sec, weight) def calc_return(self, stocks, num): ret = {} for symbol in stocks: try: ret[symbol] = (self.history[[symbol]].iloc[-1] / self.history[[symbol]].iloc[-(self.mom_lookback)] - 1).iloc[0] except: self.Debug(str(symbol)) continue ret = sorted(ret, key = ret.get, reverse = True)[:num] return ret def OnEndOfDay(self): mkt_price = self.Securities[self.MKT].Close self.mkt.append(mkt_price) mkt_perf = self.mkt[-1] / self.mkt[0] * self.cap self.Plot('Strategy Equity', 'SPY', mkt_perf) account_leverage = self.Portfolio.TotalHoldingsValue / self.Portfolio.TotalPortfolioValue self.Plot('Holdings', 'leverage', round(account_leverage, 1)) for sec, weight in self.wt.items(): self.real_wt[sec] = round(self.ActiveSecurities[sec].Holdings.Quantity * self.Securities[sec].Price / self.Portfolio.TotalPortfolioValue,4) self.Plot('Holdings', self.Securities[sec].Symbol, round(self.real_wt[sec], 3))