Overall Statistics |
Total Trades 0 Average Win 0% Average Loss 0% Compounding Annual Return 0% Drawdown 0% Expectancy 0 Net Profit 0% Sharpe Ratio 0 Probabilistic Sharpe Ratio 0% Loss Rate 0% Win Rate 0% Profit-Loss Ratio 0 Alpha 0 Beta 0 Annual Standard Deviation 0 Annual Variance 0 Information Ratio -0.87 Tracking Error 0.258 Treynor Ratio 0 Total Fees $0.00 Estimated Strategy Capacity $0 Lowest Capacity Asset |
# Laguerre Filter Indicator # -------------------------------------------------------- STOCK = 'QQQ';PERIOD = 20; GAMMA_F = 0.20; GAMMA_S = 0.80; # -------------------------------------------------------- class CustomIndicatorAlgorithm(QCAlgorithm): def Initialize(self): self.SetStartDate(2020, 1, 1) self.SetEndDate(2021, 6, 30) res = Resolution.Minute self.stock = self.AddEquity(STOCK, Resolution.Daily).Symbol self.LaguerreF = LAGUERRE('LAGUERRE', GAMMA_F) self.RegisterIndicator(self.stock, self.LaguerreF, Resolution.Daily) self.LaguerreS = LAGUERRE('LAGUERRE', GAMMA_S) self.RegisterIndicator(self.stock, self.LaguerreS, Resolution.Daily) self.SetWarmUp((PERIOD), Resolution.Daily) self.Schedule.On(self.DateRules.EveryDay(self.stock), self.TimeRules.AfterMarketOpen(self.stock, 61), self.Indicator) def Indicator(self): if self.IsWarmingUp or not self.LaguerreS.IsReady: return price = self.Securities[self.stock].Price self.Plot("Indicator", "Price", price) self.Plot("Indicator", "LaguerreF", float(self.LaguerreF.Value)) self.Plot("Indicator", "LaguerreS", float(self.LaguerreS.Value)) # Laguerre Filter as defined by John F. Ehlers in `Cybernetic Analysis for # Stock and Futures`, 2004, published by Wiley. `ISBN: 978-0-471-46307-8 # https://www.mt5users.com/wp-content/uploads/2020/01/timewarp.pdf class LAGUERRE(PythonIndicator): # Laguerre Filter def __init__(self, name, gamma ): self.Name = name self.gamma = gamma self.prices = np.array([]) self.Value = 0 self.L0 = 0.0; self.L1 = 0.0; self.L2 = 0.0; self.L3 = 0.0 def Update(self, input): mp = (input.High + input.Low)/2 self.prices = np.append(self.prices, mp)[-4:] if len(self.prices) <= 1: self.L0 = mp; self.L1 = mp; self.L2 = mp; self.L3 = mp; if len(self.prices) != 4 : return L01 = self.L0; L11 = self.L1; L21 = self.L2; L31 = self.L3; g = self.gamma self.L0 = (1 - g)*mp + g*L01 self.L1 = L01 - g*self.L0 + g*L11 self.L2 = L11 - g*self.L1 + g*L21 self.L3 = L21 - g*self.L2 + g*L31 if len(self.prices) != 4 : self.Value = mp return False self.Value = (self.L0 + (2*self.L1) + 2*(self.L2) + self.L3) / 6 return True