Overall Statistics |
Total Trades 2487 Average Win 0.73% Average Loss -0.71% Compounding Annual Return 4.755% Drawdown 41.000% Expectancy 0.008 Net Profit 26.138% Sharpe Ratio 0.189 Probabilistic Sharpe Ratio 2.828% Loss Rate 50% Win Rate 50% Profit-Loss Ratio 1.03 Alpha 0.022 Beta 0.111 Annual Standard Deviation 0.154 Annual Variance 0.024 Information Ratio -0.161 Tracking Error 0.221 Treynor Ratio 0.264 Total Fees $282936.26 Estimated Strategy Capacity $600000.00 Lowest Capacity Asset OEF RZ8CR0XXNOF9 Portfolio Turnover 130.41% |
from AlgorithmImports import * import statsmodels.api as sm class EmotionalLightBrownGuanaco(QCAlgorithm): def Initialize(self): self.SetStartDate(2018, 1, 1) self.SetEndDate(2023, 1, 1) self.SetCash(1000000) res=Resolution.Hour # change to Resolution.Minute to compare!!!! self.SPY = self.AddEquity("SPY",res ).Symbol self.SetBenchmark("SPY") self.tickers=['GDX',"OEF"] self.symbols=[] for i in self.tickers: self.symbols.append(self.AddEquity(i, res).Symbol) self.Schedule.On( self.DateRules.EveryDay(), self.TimeRules.AfterMarketOpen('SPY', 30), self.rebalance_when_in_the_market) def rebalance_when_in_the_market(self): if self.Time.day%2!=0: self.SetHoldings(self.symbols[1],-0.5) self.SetHoldings(self.symbols[0],0.5) else: self.SetHoldings(self.symbols[0],-0.5) self.SetHoldings(self.symbols[1],0.5)