Overall Statistics |
Total Orders 1873 Average Win 0.28% Average Loss -0.17% Compounding Annual Return 11.291% Drawdown 61.700% Expectancy 0.769 Start Equity 100000 End Equity 288426.59 Net Profit 188.427% Sharpe Ratio 0.356 Sortino Ratio 0.411 Probabilistic Sharpe Ratio 1.246% Loss Rate 32% Win Rate 68% Profit-Loss Ratio 1.62 Alpha -0.006 Beta 1.332 Annual Standard Deviation 0.272 Annual Variance 0.074 Information Ratio 0.1 Tracking Error 0.195 Treynor Ratio 0.073 Total Fees $2491.81 Estimated Strategy Capacity $3000.00 Lowest Capacity Asset UTSI RSQ0CRVRG485 Portfolio Turnover 0.44% |
# region imports from AlgorithmImports import * # endregion class HipsterVioletRabbit(QCAlgorithm): def initialize(self): self.set_start_date(2014, 9, 10) # Set Start Date self.set_cash(100000) # Set Strategy Cash self.add_universe(self.my_coarse_filter_function, self.my_fine_fundamental_function) self.month = None def my_coarse_filter_function(self, coarse): return [c.symbol for c in coarse if c.dollar_volume > 1e7] def my_fine_fundamental_function(self, fine): tech = [x for x in fine if x.asset_classification.morningstar_sector_code == MorningstarSectorCode.TECHNOLOGY] unprofitable = [x for x in tech if x.financial_statements.income_statement.normalized_income_as_reported.three_months <= 0] sorted_revenue = sorted(unprofitable, key=lambda f: f.financial_statements.income_statement.total_revenue.one_month, reverse=True) return [f.symbol for f in sorted_revenue[:50]] def on_data(self, data): if self.month == self.time.month: return self.month = self.time.month securities = data.Keys n_securities = len(securities) for s in securities: self.set_holdings(s, 1 / n_securities)