Overall Statistics
Total Trades
8
Average Win
0.00%
Average Loss
-0.01%
Compounding Annual Return
-0.044%
Drawdown
0.000%
Expectancy
-0.464
Net Profit
-0.015%
Sharpe Ratio
-2.171
Probabilistic Sharpe Ratio
0.005%
Loss Rate
50%
Win Rate
50%
Profit-Loss Ratio
0.07
Alpha
0
Beta
0
Annual Standard Deviation
0
Annual Variance
0
Information Ratio
0.357
Tracking Error
0.476
Treynor Ratio
-118.35
Total Fees
$14.80
from clr import AddReference


AddReference("System")
AddReference("QuantConnect.Algorithm")
AddReference("QuantConnect.Indicators")
AddReference("QuantConnect.Common")


from System import *
from QuantConnect import *
from QuantConnect.Algorithm import *
from QuantConnect.Indicators import *
from datetime import datetime
from math import floor
import decimal
import threading
from enum import Enum, auto


class Position(Enum):
    """Enum defining either a long position or short position."""
    LONG = auto()
    SHORT = auto()


class ForexAlgo(QCAlgorithm):
    """QuantConnect Algorithm Class for trading the EURUSD forex pair."""

    # symbol of the forex pair: European Euros and US Dollars
    SYMBOL = Futures.Currencies.EUR;

    # number of periods where the fast moving average is
    # above or below the slow moving average before
    # a trend is confirmed
    HOURLY_TREND_PERIODS = 17
    DAILY_TREND_PERIODS = 4

    # limit for the number of trades per trend
    TREND_LIMIT_NUM_TRADES = 5

    # maximum holdings for each market direction
    MAX_HOLDING_ONE_DIRECTION = 1

    # units of currency for each trade; this will be updated based on 
    # margin calls and port size
    TRADE_SIZE = 1

    # take-proft and stop-loss offsets.
    TP_OFFSET = decimal.Decimal(0.06)
    SL_OFFSET = decimal.Decimal(0.06) #10/10000

    # stochastic indicator levels for overbought and oversold
    STOCH_OVERBOUGHT_LEVEL = 80
    STOCH_OVERSOLD_LEVEL = 20

    # dictionary to keep track of associated take-profit and
    # stop-loss orders
    associatedOrders = {}

    # concurrency control for the dictionary
    associatedOrdersLock = threading.Lock()

    def Initialize(self):
        """Method called to initialize the trading algorithm."""
        
        self.SetTimeZone("America/New_York")

        # backtest testing range
        self.SetStartDate(2020, 1, 1)
        self.SetEndDate(2020, 5, 1)

        # amount of cash to use for backtest
        self.SetCash(1000000)
        
        # We'll monitor the Forex trading pair
        self.eurPair = self.AddForex("EURUSD", Resolution.Minute)

        # But we'll buy and sell the futures contract
        self.forexPair = self.AddFuture(self.SYMBOL, Resolution.Minute)
        self.forexPair.SetFilter(timedelta(2), timedelta(90))
        
        # brokerage model dictates the costs, slippage model, and fees
        # associated with the broker
        self.SetBrokerageModel(BrokerageName.InteractiveBrokersBrokerage, AccountType.Margin)
        
        
        # 14 day ATR for to get the resolution
        self.fourteenDayATR = self.ATR(self.eurPair.Symbol, 14, MovingAverageType.Simple, Resolution.Daily)

        # # define a slow and fast moving average indicator
        # # slow moving average indicator: 200 periods
        # # fast moving average indicator: 50 periods
        # # these indicator objects are automatically updated
        self.hourlySlowSMA = self.SMA(self.eurPair.Symbol, 200, Resolution.Hour)
        self.hourlyFastSMA = self.SMA(self.eurPair.Symbol, 50, Resolution.Hour)

        # # define a pair of moving averages in order to confirm an
        # # alignment trend in the daily charts
        # # If both the hourly trend (using the 2 hourly SMAs above) and daily
        # # trend show the same trend direction,
        # # then the trend is a strong trend
        self.dailySlowSMA = self.SMA(self.eurPair.Symbol, 21, Resolution.Daily)
        self.dailyFastSMA = self.SMA(self.eurPair.Symbol, 7, Resolution.Daily)

        # counters defining the number of periods of the ongoing trend
        # (both the main hourly trend and the alignment daily trend)
        self.hourlySMATrend = 0
        self.dailySMATrend = 0

        # number of trades executed in this trend
        self.trendNumTrades = 0

        # # stochastic indicator
        # # stochastic period: 9
        # # stochastic k period: 9
        # # stochastic d period: 5
        self.stoch = self.STO(self.eurPair.Symbol, 9, 9, 5, Resolution.Hour)

        # keeps track of overbought/oversold conditions in the previous period
        self.previousIsOverbought = None
        self.previousIsOversold = None

        # keeps track of the time of the previous period
        self.previousTime = self.Time
        
        # Widen the free portfolio percentage to 30% to avoid margin calls for futures
        self.Settings.FreePortfolioValuePercentage = 0.30
        
        # Setting a risk management model
        #self.SetRiskManagement(TrailingStopRiskManagementModel(0.06))
        
        benchmark = self.AddEquity("SPY");
        self.SetBenchmark(benchmark.Symbol);
        


    def OnData(self, data):
        """Method called when new data is ready for each period."""
        
        for chain in data.FutureChains:
            self.popularContracts = [contract for contract in chain.Value if contract.OpenInterest > 1000]
  
            # If the length of contracts in this chain is zero, continue to the next chain
            if len(self.popularContracts) == 0:
                continue
    
            # Sort our contracts by open interest in descending order and save to sortedByOIContracts
            sortedByOIContracts = sorted(self.popularContracts, key=lambda k : k.OpenInterest, reverse=True)
            
            # Save the contract with the highest open interest to self.liquidContract
            self.liquidContract = sortedByOIContracts[0]
            
            
            #self.Debug(f"Symbol: {self.liquidContract.Symbol} Value: {self.liquidContract.LastPrice} Exp: {self.liquidContract.Expiry}")
            
            # if self.Portfolio[self.liquidContract.Symbol].Invested:
            #     self.mom.Update(slice.Time, self.liquidContract.LastPrice)
            #     self.Log(f"Current Value: {self.mom.Current.Value}")
            #     return
        
            # self.SetHoldings(self.liquidContract.Symbol, 1)
            
            # self.mom = self.MOM(self.liquidContract.Symbol, self.lookback)
            # hist = self.History(self.liquidContract.Symbol, self.lookback)['close']
            # self.Log(hist.to_string())
            # for k, v in hist.items():
            #     self.mom.Update(k[2], v)
            # self.Log(f"Current Value: {self.mom.Current.Value}")
            
            # Contract properties
            # class FuturesContract:
            #     self.Symbol # (Symbol) Symbol for contract needed to trade
            #     self.Expiry # (datetime) When the future expires
            #     self.LastPrice # (decimal) Last sale price
            #     self.BidPrice # (decimal) Offered price for contract
            #     self.AskPrice # (decimal) Asking price for contract
            #     self.Volume # (long) Reported volume
            #     self.OpenInterest # (decimal) Number of open contracts
            
            
            #self.Debug(f"Symbol: {self.liquidContract.Symbol} Value: {self.liquidContract.LastPrice} Exp: {self.liquidContract.Expiry}")
            
            # only trade when the indicators are ready
            if not self.hourlySlowSMA.IsReady or not self.hourlyFastSMA.IsReady or not self.stoch.IsReady or not self.fourteenDayATR.IsReady:
                #self.Debug(f"hourly: {self.hourlySlowSMA.IsReady} fast: {self.hourlyFastSMA.IsReady}  stoch: {self.stoch.IsReady} 14days: {self.fourteenDayATR.IsReady}")
                return
    
            # trade only once per period
            # if self.previousTime.time().hour == self.Time.time().hour:
            #     return
                
            # only trade once we're two above the renko noise
            # 14 day atr price change in tick
    
            self.periodPreUpdateStats()
            
            price = self.liquidContract.LastPrice
            
            #2. Save the contract security object to the variable future
            future = self.Securities[self.liquidContract.Symbol]
                
            #3. Calculate the number of contracts we can afford based on the margin required
            # Divide the margin remaining by the initial margin and save to self.contractsToBuy
            self.TRADE_SIZE = 1 #floor( (self.Portfolio.MarginRemaining / future.BuyingPowerModel.InitialOvernightMarginRequirement))
            
            # if it is suitable to go long during this period
            if (self.entrySuitability() == Position.LONG):
                self.enterMarketOrderPosition(
                        symbol=self.liquidContract.Symbol,
                        position=Position.LONG,
                        posSize=self.TRADE_SIZE,
                        tp=round((price + (price * self.TP_OFFSET)), 5), #round(price * (1 + self.TP_OFFSET), 4), #(price + self.TP_OFFSET, 4),
                        sl=round((price + (price * self.SL_OFFSET)), 5) ) #round(price * (1 - self.SL_OFFSET), 4) ) #round(price - self.SL_OFFSET, 4))
    
            # it is suitable to go short during this period
            elif (self.entrySuitability() == Position.SHORT):
                self.enterMarketOrderPosition(
                        symbol=self.liquidContract.Symbol,
                        position=Position.SHORT,
                        posSize=self.TRADE_SIZE,
                        tp=round((price + (price * self.TP_OFFSET)), 5), #tp= round(price * (1 - self.TP_OFFSET), 4), #tp=round(price - self.TP_OFFSET, 4),
                        sl=round((price + (price * self.SL_OFFSET)), 5) ) #sl= round(price * (1 + self.SL_OFFSET), 4) ) #
    
            self.periodPostUpdateStats()
    


    def entrySuitability(self):
        """Determines the suitability of entering a position for the current period.
        Returns either Position.LONG, Position.SHORT, or None"""

        # units of currency that the bot currently holds
        holdings = self.Portfolio[self.liquidContract.Symbol].Quantity

        # conditions for going long (buying)
        if (
                # uptrend for a certain number of periods in both
                # the main hourly trend and alignment daily trend
                self.dailySMATrend >= self.DAILY_TREND_PERIODS and
                self.hourlySMATrend >= self.HOURLY_TREND_PERIODS and
                # if it is not oversold
                self.stoch.StochD.Current.Value > self.STOCH_OVERSOLD_LEVEL and
                # if it just recently stopped being oversold
                self.previousIsOversold is not None and
                self.previousIsOversold == True and
                # if holdings does not exceed the limit for a direction
                holdings < self.MAX_HOLDING_ONE_DIRECTION and
                # if number of trades during this trend does not exceed
                # the number of trades per trend
                self.trendNumTrades < self.TREND_LIMIT_NUM_TRADES
            ):
            return Position.LONG

        # conditions for going short (selling)
        elif (
                # downtrend for a certain number of periods in both
                # the main hourly trend and alignment daily trend
                self.dailySMATrend <= -self.DAILY_TREND_PERIODS and
                self.hourlySMATrend <= -self.HOURLY_TREND_PERIODS and
                # if it is not overbought
                self.stoch.StochD.Current.Value < self.STOCH_OVERBOUGHT_LEVEL and
                # if it just recently stopped being overbought
                self.previousIsOverbought is not None and
                self.previousIsOverbought == True and
                # if holdings does not exceed the limit for a direction
                holdings > -self.MAX_HOLDING_ONE_DIRECTION and
                # if number of trades during this trend does not exceed
                # the number of trades per trend
                self.trendNumTrades < self.TREND_LIMIT_NUM_TRADES
            ):
            return Position.SHORT

        # unsuitable to enter a position for now
        return None


    def periodPreUpdateStats(self):
        """Method called before considering trades for each period."""

        # since this class's OnData() method is being called in each new
        # tick period, the daily stats should only be updated if
        # the current date is different from the date of the previous
        # invocation
        if self.previousTime.date() != self.Time.date():

            # uptrend: if the fast moving average is above the slow moving average
            if self.dailyFastSMA.Current.Value > self.dailySlowSMA.Current.Value:
                if self.dailySMATrend < 0:
                    self.dailySMATrend = 0
                
                self.dailySMATrend += 1

            # downtrend: if the fast moving average is below the slow moving average
            elif self.dailyFastSMA.Current.Value < self.dailySlowSMA.Current.Value:
                if self.dailySMATrend > 0:
                    self.dailySMATrend = 0
                
                self.dailySMATrend -= 1


        # uptrend: if the fast moving average is above the slow moving average
        if self.hourlyFastSMA.Current.Value > self.hourlySlowSMA.Current.Value:
            if self.hourlySMATrend < 0:
                self.hourlySMATrend = 0
                self.trendNumTrades = 0
            
            self.hourlySMATrend += 1

        # downtrend: if the fast moving average is below the slow moving average
        elif self.hourlyFastSMA.Current.Value < self.hourlySlowSMA.Current.Value:
            if self.hourlySMATrend > 0:
                self.hourlySMATrend = 0
                self.trendNumTrades = 0
            
            self.hourlySMATrend -= 1


    def periodPostUpdateStats(self):
        """Method called after considering trades for each period."""

        if self.stoch.StochD.Current.Value <= self.STOCH_OVERSOLD_LEVEL:
            self.previousIsOversold = True
        else:
            self.previousIsOversold = False

        if self.stoch.StochD.Current.Value >= self.STOCH_OVERBOUGHT_LEVEL:
            self.previousIsOverbought = True
        else:
            self.previousIsOverbought = False

        self.previousTime = self.Time


    def enterMarketOrderPosition(self, symbol, position, posSize, tp, sl):
        """Enter a position (either Position.LONG or Position.Short)
        for the given symbol with the position size using a market order.
        Associated take-profit (tp) and stop-loss (sl) orders are entered."""

        self.associatedOrdersLock.acquire()
        
        self.notionalValue = self.liquidContract.AskPrice * self.forexPair.SymbolProperties.ContractMultiplier
        
        self.Debug(f"Sym: {symbol} Margin: {self.Portfolio.MarginRemaining} Price: {self.liquidContract.LastPrice} NotionalValue: {self.notionalValue} Pos: {position} Size: {posSize}, Tp: {tp}, Sl: {sl}")

        if position == Position.LONG:
            self.Buy(symbol, posSize)
            takeProfitOrderTicket = self.LimitOrder(symbol, -posSize, tp)
            stopLossOrderTicket = self.StopMarketOrder(symbol, -posSize, sl)

        elif position == Position.SHORT:
            self.Sell(symbol, posSize)
            takeProfitOrderTicket = self.LimitOrder(symbol, posSize, tp)
            stopLossOrderTicket = self.StopMarketOrder(symbol, posSize, sl)

        # associate the take-profit and stop-loss orders with one another
        self.associatedOrders[takeProfitOrderTicket.OrderId] = stopLossOrderTicket
        self.associatedOrders[stopLossOrderTicket.OrderId] = takeProfitOrderTicket

        self.associatedOrdersLock.release()

        self.trendNumTrades += 1


    def OnOrderEvent(self, orderEvent):
        """Method called when an order has an event."""

        # if the event associated with the order is about an
        # order being fully filled
        if orderEvent.Status == OrderStatus.Filled:

            order = self.Transactions.GetOrderById(orderEvent.OrderId)

            # if the order is a take-profit or stop-loss order
            if order.Type == OrderType.Limit or order.Type == OrderType.StopMarket:

                self.associatedOrdersLock.acquire()

                # during volatile markets, the associated order and
                # this order may have been triggered in quick
                # succession, so this method is called twice
                # with this order and the associated order.
                # this prevents a runtime error in this case.
                if order.Id not in self.associatedOrders:
                    self.associatedOrdersLock.release()
                    return

                # obtain the associated order and cancel it.
                associatedOrder = self.associatedOrders[order.Id]
                associatedOrder.Cancel()

                # remove the entries of this order and its
                # associated order from the hash table.
                del self.associatedOrders[order.Id]
                del self.associatedOrders[associatedOrder.OrderId]

                self.associatedOrdersLock.release()
                
                
                


    def OnEndOfAlgorithm(self):
        """Method called when the algorithm terminates."""

        # Liquidate entire portfolio (all unrealized profits/losses will be realized).
        # long and short positions are closed irrespective of profits/losses.
        self.Liquidate()