Overall Statistics |
Total Trades 0 Average Win 0% Average Loss 0% Compounding Annual Return 0% Drawdown 0% Expectancy 0 Net Profit 0% Sharpe Ratio 0 Probabilistic Sharpe Ratio 0% Loss Rate 0% Win Rate 0% Profit-Loss Ratio 0 Alpha 0 Beta 0 Annual Standard Deviation 0 Annual Variance 0 Information Ratio -1.501 Tracking Error 0.103 Treynor Ratio 0 Total Fees $0.00 Estimated Strategy Capacity $0 Lowest Capacity Asset |
class JumpingOrangeTermite(QCAlgorithm): def Initialize(self): self.SetStartDate(2021, 6, 21) # Set Start Date self.SetCash(100000) # Set Strategy Cash self.spy = self.AddEquity("SPY", Resolution.Daily).Symbol self.Securities["SPY"].SetDataNormalizationMode(DataNormalizationMode.Adjusted) self.ema = self.EMA(self.spy,10,Resolution.Daily) history = self.History(self.spy,10,Resolution.Daily) for time , row in history.loc[self.spy].iterrows(): self.ema.Update(time,row.close) self.Securities["SPY"].SetDataNormalizationMode(DataNormalizationMode.Raw) def OnData(self, data): '''OnData event is the primary entry point for your algorithm. Each new data point will be pumped in here. Arguments: data: Slice object keyed by symbol containing the stock data ''' if self.spy in data.Splits: self.ema.Reset() split = data.Splits[self.spy] history = self.History(self.spy,10,Resolution.Daily) history = history/split.SplitFactor for time , row in history.loc[self.spy].iterrows(): self.ema.Update(time,row.close)