Overall Statistics
Total Orders
1257
Average Win
0.15%
Average Loss
-0.13%
Compounding Annual Return
40.932%
Drawdown
6.400%
Expectancy
0.297
Start Equity
100000
End Equity
130232.02
Net Profit
30.232%
Sharpe Ratio
2.093
Sortino Ratio
2.998
Probabilistic Sharpe Ratio
91.984%
Loss Rate
41%
Win Rate
59%
Profit-Loss Ratio
1.19
Alpha
0.119
Beta
0.764
Annual Standard Deviation
0.108
Annual Variance
0.012
Information Ratio
1.046
Tracking Error
0.083
Treynor Ratio
0.295
Total Fees
$1286.74
Estimated Strategy Capacity
$3000000.00
Lowest Capacity Asset
MRK R735QTJ8XC9X
Portfolio Turnover
25.68%
#region imports
from AlgorithmImports import *
#endregion
class DualMomentumAlphaModel(AlphaModel):

    def __init__(self):
        self.sectors = {}
        self.securities_list = []
        self.day = -1

    def update(self, algorithm, data):

        insights = []

        for symbol in set(data.splits.keys() + data.dividends.keys()):
            security = algorithm.securities[symbol]
            if security in self.securities_list:
                security.indicator.reset()
                algorithm.subscription_manager.remove_consolidator(security.symbol, security.consolidator)
                self._register_indicator(algorithm, security)

                history = algorithm.history[TradeBar](security.symbol, 7,
                                                      Resolution.DAILY,
                                                      data_normalization_mode=DataNormalizationMode.SCALED_RAW)
                for bar in history:
                    security.consolidator.update(bar)

        if data.quote_bars.count == 0:
            return []

        if self.day == algorithm.time.day:
            return []
        self.day = algorithm.time.day

        momentum_by_sector = {}
        security_momentum = {}

        for sector in self.sectors:
            securities = self.sectors[sector]
            security_momentum[sector] = {security: security.indicator.current.value
                              for security in securities if
                              security.symbol in data.quote_bars and security.indicator.is_ready}
            momentum_by_sector[sector] = sum(list(security_momentum[sector].values())) / len(self.sectors[sector]) 

        target_sectors = [sector for sector in self.sectors if momentum_by_sector[sector] > 0]
        target_securities = []

        for sector in target_sectors:
            for security in security_momentum[sector]:
                if security_momentum[sector][security] > 0:
                    target_securities.append(security)

        target_securities = sorted(target_securities, key = lambda x: algorithm.securities[x.symbol].Fundamentals.MarketCap, reverse=True)[:10]

        for security in target_securities:
            insights.append(Insight.price(security.symbol, Expiry.END_OF_DAY, InsightDirection.UP))
        
        return insights

    def on_securities_changed(self, algorithm, changes):
        security_by_symbol = {}
        for security in changes.RemovedSecurities:
            if security in self.securities_list:
                algorithm.subscription_manager.remove_consolidator(security.symbol, security.consolidator)
                self.securities_list.remove(security)
            for sector in self.sectors:
                if security in self.sectors[sector]:
                    self.sectors[sector].remove(security)

        for security in changes.AddedSecurities:
            sector = security.Fundamentals.AssetClassification.MorningstarSectorCode
            security_by_symbol[security.symbol] = security
            security.indicator = MomentumPercent(1)
            self._register_indicator(algorithm, security)
            self.securities_list.append(security)

            if sector not in self.sectors:
                self.sectors[sector] = set()
            self.sectors[sector].add(security)

            if security_by_symbol:
                history = algorithm.history[TradeBar](list(security_by_symbol.keys()), 7,
                                                  Resolution.DAILY,
                                                  data_normalization_mode=DataNormalizationMode.SCALED_RAW)
                for trade_bars in history:
                    for bar in trade_bars.values():
                        security_by_symbol[bar.symbol].consolidator.update(bar)

    def _register_indicator(self, algorithm, security):
        security.consolidator = TradeBarConsolidator(Calendar.WEEKLY)
        algorithm.subscription_manager.add_consolidator(security.symbol, security.consolidator)
        algorithm.register_indicator(security.symbol, security.indicator, security.consolidator)
# region imports
from AlgorithmImports import *
from DualMomentumAlphaModel import *
# endregion

class SectorDualMomentumStrategy(QCAlgorithm):
    undesired_symbols_from_previous_deployment = []
    checked_symbols_from_previous_deployment = False

    def initialize(self):
        self.set_start_date(2023, 6, 5)
        self.set_end_date(2024, 6, 5)
        self.set_cash(100000)
        
        #self.set_brokerage_model(BrokerageName.INTERACTIVE_BROKERS_BROKERAGE, AccountType.MARGIN)

        self.settings.minimum_order_margin_portfolio_percentage = 0

        self.universe_settings.data_normalization_mode = DataNormalizationMode.RAW
        self.universe_settings.asynchronous = True
        self.add_universe(self.universe.etf("SPY", self.universe_settings, self._etf_constituents_filter))

        self.add_alpha(DualMomentumAlphaModel())

        self.settings.rebalance_portfolio_on_security_changes = False
        self.settings.rebalance_portfolio_on_insight_changes = False
        self.day = -1
        self.set_portfolio_construction(EqualWeightingPortfolioConstructionModel(self._rebalance_func))

        self.add_risk_management(TrailingStopRiskManagementModel())

        self.set_execution(ImmediateExecutionModel())

        self.set_warm_up(timedelta(7))

        self.set_benchmark("SPY")

    def _etf_constituents_filter(self, constituents: List[ETFConstituentUniverse]) -> List[Symbol]:
        selected = sorted([c for c in constituents if c.weight],
            key=lambda c: c.weight, reverse=True)[:200]
        return [c.symbol for c in selected]

    def _rebalance_func(self, time):
        if self.day != self.time.day and not self.is_warming_up and self.current_slice.quote_bars.count > 0:
            self.day = self.time.day
            return time
        return None

    def on_data(self, data):
        if not self.is_warming_up and not self.checked_symbols_from_previous_deployment:
            for security_holding in self.portfolio.values():
                if not security_holding.invested:
                    continue
                symbol = security_holding.symbol
                if not self.insights.has_active_insights(symbol, self.utc_time):
                    self.undesired_symbols_from_previous_deployment.append(symbol)
            self.checked_symbols_from_previous_deployment = True

        for symbol in self.undesired_symbols_from_previous_deployment:
            if self.is_market_open(symbol):
                self.liquidate(symbol, tag="Not backed up by current insights")
                self.undesired_symbols_from_previous_deployment.remove(symbol)