Overall Statistics |
Total Trades 566 Average Win 0.24% Average Loss -0.22% Compounding Annual Return -96.265% Drawdown 24.400% Expectancy -0.438 Net Profit -24.162% Sharpe Ratio -4.379 Probabilistic Sharpe Ratio 0% Loss Rate 73% Win Rate 27% Profit-Loss Ratio 1.09 Alpha -0.935 Beta -0.055 Annual Standard Deviation 0.216 Annual Variance 0.046 Information Ratio -4.47 Tracking Error 0.247 Treynor Ratio 17.197 Total Fees $707.50 |
from datetime import timedelta class OptionsAlgorithm(QCAlgorithm): # Order ticket for our stop order, Datetime when stop order was last hit stopMarketTicket = None stopMarketOrderFillTime = datetime.min highestSPYPrice = 0 def Initialize(self): self.SetStartDate(2015, 11, 1) self.SetEndDate(2015, 12, 1) self.SetCash(20000) self.syl = "SPY" self.spy = "SPY" equity = self.AddEquity(self.syl, Resolution.Minute) equity.SetDataNormalizationMode(DataNormalizationMode.Raw) # create a XX-period exponential moving average; since this is minute, may have to multiply by 2 self.fast = self.EMA("SPY", 26, Resolution.Minute); # create a XX-period exponential moving average; since this is minute, may have to multiply by 2 self.slow = self.EMA("SPY", 97, Resolution.Minute); # self.macd = self.MACD(self.syl, 12, 26, 9, MovingAverageType.Exponential, Resolution.Daily) self.underlyingsymbol = equity.Symbol # use the underlying equity as the benchmark self.SetBenchmark(equity.Symbol) # self.hist = RollingWindow[float](390*22) def OnData(self,slice): '''OnData event is the primary entry point for your algorithm. Each new data point will be pumped in here.''' # buying puts; needs to be in a loop; will need to initiate options chain here; may need to incorporate slope # will need to check and see if holding any positions self.Portfolio[self.BuyPut()].Quantity == 0 and #self.Securities[self.vix].Price > 30 and not self.buy_spy if (self.Portfolio.Invested == False) and (self.fast.Current.Value < self.slow.Current.Value) and (self.Securities[self.spy].Price >= (self.fast.Current.Value - 0.05)): self.BuyPut() #if (self.fast.Current.Value > self.slow.Current.Value): # self.Liquidate() if (self.Securities["SPY"].Close < self.highestSPYPrice) or (self.Securities[self.spy].Price < (self.fast.Current.Value - 0.20)) or (self.Securities[self.spy].Close >= (self.fast.Current.Value + 0.20)): #2. Save the new high to highestSPYPrice; then update the stop price to 90% of highestSPYPrice self.highestSPYPrice = self.Securities["SPY"].Close #updateFields = UpdateOrderFields() #updateFields.StopPrice = self.highestSPYPrice * 0.9 #self.stopMarketTicket.Update(updateFields) self.Liquidate() #buying calls; #if (self.fast.Current.Value > self.slow.Current.Value): # self.BuyCall() # if self.fast.IsReady: # if self.Portfolio[self.syl].Quantity == 0 and self.fast.Current.Value > self.slow.Current.Value: # self.Buy(self.syl,100) # # <1> if there is a MACD short signal, liquidate the stock # elif self.Portfolio[self.syl].Quantity > 0 and self.macd.Current.Value < self.macd.Signal.Current.Value: # self.Liquidate() # # <2> if today's close < lowest close of last 30 days, liquidate the stock # history = self.History([self.syl], 30, Resolution.Daily).loc[self.syl]['close'] # self.Plot('Stock Plot','stop loss frontier', min(history)) # if self.Portfolio[self.syl].Quantity > 0: # if self.Securities[self.syl].Price < min(history): # self.Liquidate() # <3> if there is a MACD short signal, trade the options # elif self.Portfolio[self.syl].Quantity > 0 and self.macd.Current.Value < self.macd.Signal.Current.Value: # try: # if self.Portfolio[self.syl].Invested and not self.Portfolio[self.contract].Invested \ # and self.Time.hour != 0 and self.Time.minute == 1: # self.SellCall() # except: # if self.Portfolio[self.syl].Invested and self.Time.hour != 0 and self.Time.minute == 1: # self.SellCall() def BuyPut(self): contracts = self.OptionChainProvider.GetOptionContractList(self.underlyingsymbol, self.Time.date()) if len(contracts) == 0: return filtered_contracts = self.InitialFilter(self.underlyingsymbol, contracts, -1, 1, 0, 14) put = [x for x in filtered_contracts if x.ID.OptionRight == 1] # sorted the contracts according to their expiration dates and choose the ATM options contracts = sorted(sorted(put, key = lambda x: abs(self.Securities[self.syl].Price - x.ID.StrikePrice)), key = lambda x: x.ID.Date, reverse=True) self.contract = contracts[0] self.AddOptionContract(self.contract, Resolution.Minute) self.Buy(self.contract, 5) # def BuyCall(self): # contracts = self.OptionChainProvider.GetOptionContractList(self.underlyingsymbol, self.Time.date()) # if len(contracts) == 0: return # filtered_contracts = self.InitialFilter(self.underlyingsymbol, contracts, -3, 3, 0, 30) # call = [x for x in filtered_contracts if x.ID.OptionRight == 1] # sorted the contracts according to their expiration dates and choose the ATM options # contracts = sorted(sorted(call, key = lambda x: abs(self.Securities[self.syl].Price - x.ID.StrikePrice)), # key = lambda x: x.ID.Date, reverse=True) # self.contract = contracts[0] # self.AddOptionContract(self.contract, Resolution.Minute) # self.Buy(self.contract, 1) def SellCall(self): contracts = self.OptionChainProvider.GetOptionContractList(self.underlyingsymbol, self.Time.date()) if len(contracts) == 0: return filtered_contracts = self.InitialFilter(self.underlyingsymbol, contracts, -3, 3, 0, 30) put = [x for x in filtered_contracts if x.ID.OptionRight == 0] # sorted the contracts according to their expiration dates and choose the ATM options contracts = sorted(sorted(put, key = lambda x: abs(self.Securities[self.syl].Price - x.ID.StrikePrice)), key = lambda x: x.ID.Date, reverse=True) self.contract = contracts[0] self.AddOptionContract(self.contract, Resolution.Minute) self.Sell(self.contract, 1) def InitialFilter(self, underlyingsymbol, symbol_list, min_strike_rank, max_strike_rank, min_expiry, max_expiry): ''' This method is an initial filter of option contracts according to the range of strike price and the expiration date ''' if len(symbol_list) == 0 : return # fitler the contracts based on the expiry range contract_list = [i for i in symbol_list if min_expiry < (i.ID.Date.date() - self.Time.date()).days < max_expiry] # find the strike price of ATM option atm_strike = sorted(contract_list, key = lambda x: abs(x.ID.StrikePrice - self.Securities[underlyingsymbol].Price))[0].ID.StrikePrice strike_list = sorted(set([i.ID.StrikePrice for i in contract_list])) # find the index of ATM strike in the sorted strike list atm_strike_rank = strike_list.index(atm_strike) try: min_strike = strike_list[atm_strike_rank + min_strike_rank] max_strike = strike_list[atm_strike_rank + max_strike_rank] except: min_strike = strike_list[0] max_strike = strike_list[-1] filtered_contracts = [i for i in contract_list if i.ID.StrikePrice >= min_strike and i.ID.StrikePrice <= max_strike] return filtered_contracts