Overall Statistics |
Total Trades 0 Average Win 0% Average Loss 0% Compounding Annual Return 0% Drawdown 0% Expectancy 0 Net Profit 0% Sharpe Ratio 0 Loss Rate 0% Win Rate 0% Profit-Loss Ratio 0 Alpha 0 Beta 0 Annual Standard Deviation 0 Annual Variance 0 Information Ratio 0 Tracking Error 0 Treynor Ratio 0 Total Fees $0.00 |
# QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals. # Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from clr import AddReference AddReference("System") AddReference("QuantConnect.Algorithm") AddReference("QuantConnect.Common") from System import * from QuantConnect import * from QuantConnect.Algorithm import * from datetime import timedelta ### <summary> ### This example demonstrates how to add options for a given underlying equity security. ### It also shows how you can prefilter contracts easily based on strikes and expirations, and how you ### can inspect the option chain to pick a specific option contract to trade. ### </summary> ### <meta name="tag" content="using data" /> ### <meta name="tag" content="options" /> ### <meta name="tag" content="filter selection" /> class BasicTemplateOptionsAlgorithm(QCAlgorithm): def Initialize(self): self.SetStartDate(2016, 5, 1) self.SetEndDate(2016, 12, 1) self.SetCash(100000) option = self.AddOption("GOOG") self.option_symbol = option.Symbol # set our strike/expiry filter for this option chain option.SetFilter(-2, +2, timedelta(0), timedelta(180)) # use the underlying equity as the benchmark self.SetBenchmark("GOOG") def OnData(self,slice): if self.Portfolio.Invested: return for kvp in slice.OptionChains: if kvp.Key != self.option_symbol: continue chain = kvp.Value # we sort the contracts to find at the money (ATM) contract with farthest expiration contracts = sorted(sorted(sorted(chain, \ key = lambda x: abs(chain.Underlying.Price - x.Strike)), \ key = lambda x: x.Expiry, reverse=True), \ key = lambda x: x.Right, reverse=True) # if found, trade it if len(contracts) == 0: continue deltas = [x for x in contracts if x.Greeks.Delta > 0] if len(deltas)>0: self.Log("Time={}, deltas count={}".format(self.Time,len(deltas))) #symbol = contracts[0].Symbol #self.MarketOrder(symbol, 1) #self.MarketOnCloseOrder(symbol, -1) def OnOrderEvent(self, orderEvent): self.Log(str(orderEvent))