Overall Statistics |
Total Trades 0 Average Win 0% Average Loss 0% Compounding Annual Return 0% Drawdown 0% Expectancy 0 Net Profit 0% Sharpe Ratio 0 Loss Rate 0% Win Rate 0% Profit-Loss Ratio 0 Alpha 0 Beta 0 Annual Standard Deviation 0 Annual Variance 0 Information Ratio 0 Tracking Error 0 Treynor Ratio 0 Total Fees $0.00 |
using System.Collections.Generic; using System.Linq; using QuantConnect.Data.Fundamental; using QuantConnect.Data.Market; using QuantConnect.Data.UniverseSelection; namespace QuantConnect.Algorithm.CSharp { /// <summary> /// 1. adding SMA /// </summary> public class FindValue1 : QCAlgorithm { private const int _numberOfSymbolsCoarse = 100; private const int _numberOfSymbolsFine = 5; private const decimal _investmentAmt = .2m; private const int _minVolume = -1; //200000; private const decimal _minPrice = -1; // 1m; private const decimal _maxPrice = -1; //100; private const decimal _maxPbRatio = -1; // .99m; private const decimal _maxPeRatio = -1; //18.49m; private const decimal _yieldGrowthMinPct = -1; // .3m; private const string _sortType = "PB"; private const string _sortDir = "DESC"; private const int _smaPeriod = 50; //private const int _minVolume = // initialize our changes to nothing private SecurityChanges _changes = SecurityChanges.None; public override void Initialize() { UniverseSettings.Resolution = Resolution.Daily; SetStartDate(2018, 05, 01); SetEndDate(2018, 06, 01); SetCash(25000); // this add universe method accepts two parameters: // - coarse selection function: accepts an IEnumerable<CoarseFundamental> and returns an IEnumerable<Symbol> // - fine selection function: accepts an IEnumerable<FineFundamental> and returns an IEnumerable<Symbol> AddUniverse(CoarseSelectionFunction, FineSelectionFunction); foreach (Security stock in Securities.Values) { Debug("SECURITY = " + stock.Symbol); } } // sort the data by daily dollar volume and take the top 'NumberOfSymbolsCoarse' public IEnumerable<Symbol> CoarseSelectionFunction(IEnumerable<CoarseFundamental> coarse) { // Has Fundamentals, Min/Max Price filters var filteredSorted = coarse .Where(x => x.HasFundamentalData && (_minVolume < 0 || x.Volume >= _minVolume) && (_minPrice < 0 || x.Price >= _minPrice) && (_maxPrice < 0 || x.Price <= _maxPrice)) .OrderByDescending(x => x.DollarVolume); // take the top entries from our sorted collection var filtered = filteredSorted.Take(_numberOfSymbolsCoarse); //Debug("COURSE COUNT = " + filtered.Count()); // we need to return only the symbol objects return filtered.Select(x => x.Symbol); } // sort the data by P/E ratio and take the top 'NumberOfSymbolsFine' public IEnumerable<Symbol> FineSelectionFunction(IEnumerable<FineFundamental> fine) { //Price/Book filter var filtered = fine.Where(e => (_maxPbRatio < 0 || ( e.ValuationRatios.PBRatio <= _maxPbRatio && e.ValuationRatios.PBRatio > 0m))); if(_maxPeRatio >= 0){ //PE filter filtered = filtered.Where(e => e.ValuationRatios.PERatio <= _maxPeRatio); } if(_yieldGrowthMinPct >= 0){ //EPS Growth - proj this yr vs last yr //Forward > Yield && (Forward / Yield -1 > .33) _yieldGrowthMinPct filtered = filtered.Where(e => e.ValuationRatios.ForwardEarningYield > 0 && e.ValuationRatios.EarningYield > 0); //&& (( e.ValuationRatios.ForwardEarningYield / e.ValuationRatios.EarningYield) -1) >= _yieldGrowthMinPct); filtered = filtered.Where(e => (( e.ValuationRatios.ForwardEarningYield / e.ValuationRatios.EarningYield) -1) >= _yieldGrowthMinPct); } //Price Performance 52 weeks – 35.14 and above () //% Price off 50 day SMA : -1% and below () // sort descending by P/E ratio if(_sortType == "PE" && _sortDir == "ASC"){ filtered = filtered.OrderBy(x => x.ValuationRatios.PERatio); }else if (_sortType == "PE" && _sortDir == "DESC"){ filtered = filtered.OrderByDescending(x => x.ValuationRatios.PERatio); }else if (_sortType == "PB" && _sortDir == "ASC"){ filtered = filtered.OrderBy(x => x.ValuationRatios.PBRatio); }else if(_sortType == "PB" && _sortDir == "DESC"){ filtered = filtered.OrderByDescending(x => x.ValuationRatios.PBRatio); } // take the top entries from our sorted collection filtered = filtered.Take(_numberOfSymbolsFine); Debug("FINE COUNT = " + filtered.Count()); // we need to return only the symbol objects return filtered.Select(x => x.Symbol); } //Data Event Handler: New data arrives here. "TradeBars" type is a dictionary of strings so you can access it by symbol. public void OnData(TradeBars data) { /* // if we have no changes, do nothing if (_changes == SecurityChanges.None) return; // liquidate removed securities foreach (var security in _changes.RemovedSecurities) { if (security.Invested) { Liquidate(security.Symbol); Debug("Liquidated Stock: " + security.Symbol.Value); } } // we want 50% allocation in each security in our universe foreach (var security in _changes.AddedSecurities) { SetHoldings(security.Symbol, _investmentAmt); //0.5m); Debug("Purchased Stock: " + security.Symbol.Value); } _changes = SecurityChanges.None; */ } // this event fires whenever we have changes to our universe public override void OnSecuritiesChanged(SecurityChanges changes) { _changes = changes; if (changes.AddedSecurities.Count > 0) { Debug("Securities added: " + string.Join(",", changes.AddedSecurities.Select(x => x.Symbol.Value))); } if (changes.RemovedSecurities.Count > 0) { Debug("Securities removed: " + string.Join(",", changes.RemovedSecurities.Select(x => x.Symbol.Value))); } } } }