Overall Statistics |
Total Trades 0 Average Win 0% Average Loss 0% Compounding Annual Return 0% Drawdown 0% Expectancy 0 Net Profit 0% Sharpe Ratio 0 Loss Rate 0% Win Rate 0% Profit-Loss Ratio 0 Alpha 0 Beta 0 Annual Standard Deviation 0 Annual Variance 0 Information Ratio 0 Tracking Error 0 Treynor Ratio 0 Total Fees $0.00 |
from clr import AddReference AddReference("System") AddReference("QuantConnect.Algorithm") AddReference("QuantConnect.Indicators") AddReference("QuantConnect.Common") AddReference("QuantConnect.Algorithm.Framework") from System import * from QuantConnect import * from QuantConnect.Data import * from QuantConnect.Algorithm import * from QuantConnect.Indicators import * from System.Collections.Generic import List import pandas as pd class PublicHelp(QCAlgorithm): def Initialize(self): self.SetStartDate(2017,1,1) #Set Start Date self.SetEndDate(2017, 1, 20) # Set End Date #self.SetEndDate(datetime.now().date() - timedelta(1)) #Set End Date #self.SetEndDate(2013,1,1) #Set End Date self.SetCash(150000) #Set Strategy Cash self.UniverseSettings.Resolution = Resolution.Hour self.averages = {}; self.AddEquity("SPY", Resolution.Hour) self.AddUniverse(self.CoarseSelectionFunction) #Universe Filter # sort the data by volume and price, apply the moving average crossver, and take the top 24 sorted results based on breakout magnitude def CoarseSelectionFunction(self, coarse): filtered = [ x for x in coarse if (x.DollarVolume > 50000000) ] # We are going to use a dictionary to refer the object that will keep the moving averages for cf in filtered: if cf.Symbol not in self.averages: self.averages[cf.Symbol] = SymbolData(cf.Symbol, self) # Updates the SymbolData object with current EOD price avg = self.averages[cf.Symbol] history = self.History(cf.Symbol, 16) if str(cf.Symbol) in history.index: avg.WarmUpIndicators(history.loc[str(cf.Symbol)]) avg.update(cf.EndTime, cf.AdjustedPrice) # Filter the values of the dict: we only want up-trending securities values = list(filter(lambda x: x.is_uptrend, self.averages.values())) # Sorts the values of the dict: we want those with greater difference between the moving averages values.sort(key=lambda x: x.scale, reverse=True) for x in values[:200]: self.Log('symbol: ' + str(x.symbol.Value) + ' scale: ' + str(x.scale)) # we need to return only the symbol objects return [ x.symbol for x in values[:200] ] # this event fires whenever we have changes to our universe def OnSecuritiesChanged(self, changes): self.changes = changes # liquidate removed securities for security in changes.RemovedSecurities: if security.Invested: self.Liquidate(security.Symbol) #EMA Crossover Class class SymbolData(object): def __init__(self, symbol, algo): self.symbol = symbol self.fast = ExponentialMovingAverage(50) self.slow = ExponentialMovingAverage(200) self.is_uptrend = False self.scale = None self.algo = algo def update(self, time, value): if self.fast.Update(time, value) and self.slow.Update(time, value): fast = self.fast.Current.Value slow = self.slow.Current.Value self.is_uptrend = (fast / slow) > 1.00 if self.is_uptrend: self.scale = (fast - slow) / ((fast + slow) / 2.0) def WarmUpIndicators(self, history): for index in history.index: self.fast.Update(index, history.loc[index].close) self.slow.Update(index, history.loc[index].close)