Created with Highcharts 12.1.2EquityJan 2024Feb 2024Mar 2024Apr 2024May 2024Jun 2024Jul 2024Aug 2024Sep 2024Oct 2024Nov 2024Dec 2024Jan 20250500k1,000k1,500k-75-50-250500k750k1,000k1,250k0510010M20M010M20M
Overall Statistics
Total Orders
33211
Average Win
0.44%
Average Loss
-0.31%
Compounding Annual Return
-40.447%
Drawdown
48.100%
Expectancy
-0.058
Start Equity
1000000
End Equity
617346.59
Net Profit
-38.265%
Sharpe Ratio
-1.271
Sortino Ratio
-2.133
Probabilistic Sharpe Ratio
0.639%
Loss Rate
61%
Win Rate
39%
Profit-Loss Ratio
1.41
Alpha
-0.301
Beta
-0.197
Annual Standard Deviation
0.261
Annual Variance
0.068
Information Ratio
-1.704
Tracking Error
0.288
Treynor Ratio
1.686
Total Fees
$273706.54
Estimated Strategy Capacity
$4700000.00
Lowest Capacity Asset
MBLY Y2XYU2EUA8O5
Portfolio Turnover
271.20%
# region imports
from AlgorithmImports import *
# endregion

class Test(QCAlgorithm):

    def initialize(self):
        self.set_start_date(2024, 1, 1)
        self.set_end_date(2024, 12, 31)
        self.set_cash(1_000_000)
        self.settings.automatic_indicator_warm_up = True
        self._selected = []

        # Set the parameters.
        self._universe_size = 1000
        self._indicator_period = 14 # days
        self._stop_loss_atr_distance = 0.5 # 0.1 => 10% of ATR
        self._stop_loss_risk_size = 0.01 # 0.01 => Lose 1% of the portfolio if stop loss is hit
        self._max_positions = 20
        self._opening_range_minutes = 5
        self._leverage = 4

        # Add SPY so there is at least 1 asset at minute resolution to step the algorithm along.
        self._spy = self.add_equity('SPY').symbol 

        self.universe_settings.resolution = Resolution.DAILY
        self.universe_settings.schedule.on(self.date_rules.month_start(self._spy))
        
        self._universe = self.add_universe(
            lambda fundamentals: [
                f.symbol 
                for f in sorted(
                    [
                        f for f in fundamentals 
                        if f.price > 5  # price > 5
                        and f.symbol != self._spy
                        #and f.volume > 1_000_000  this will affect the performance a lot, dk why
                    ], 
                    key=lambda f: f.dollar_volume
                )[-self._universe_size:]
            ]
        )

        # run 5 min after the market open
        self.schedule.on(
            self.date_rules.every_day(self._spy), 
            self.time_rules.after_market_open(self._spy, self._opening_range_minutes), 
            self._scan_for_entries
        )  # Scheduled entry scan after market open.

        # exit 1 min before market close
        self.schedule.on(
            self.date_rules.every_day(self._spy), 
            self.time_rules.before_market_close(self._spy, 1), 
            self._exit
        )

        self.set_warm_up(timedelta(2*self._indicator_period))

        # Set Benchmark
        self.SetBenchmark("SPY")

        # Variable to hold the last calculated benchmark value
        self.lastBenchmarkValue = None
        

        # Our inital benchmark value scaled to match our portfolio
        # dont know why the inital value of SP 500 is 1047215.721 at 2024/1/1, I scale back by just deducting a constant, still have some minor gap but should be negligible in the long term
        # need to adjust for the constant depends on the initial gap
        self.BenchmarkPerformance = self.Portfolio.TotalPortfolioValue - 47000


    def on_securities_changed(self, changes):
        # register automatic indicators when add a new security
        for security in changes.added_securities:
            security.atr = self.atr(security.symbol, self._indicator_period, resolution=Resolution.DAILY)
            security.volume_sma = self.sma(security.symbol, self._indicator_period, resolution=Resolution.DAILY)
        
        for security in changes.removed_securities:
            # Stop updating the indicators of assets that leave the universe to release computation resources.
            self.deregister_indicator(security.atr)
            self.deregister_indicator(security.volume_sma)
        
    def _scan_for_entries(self):
        symbols = list(self._universe.selected)
        equities = [self.securities[symbol] for symbol in symbols]
        history = self.history(symbols, 5, Resolution.MINUTE)
        volume_sum = history.volume.unstack(0).sum()
        
        equities = [equity for equity in equities if equity.symbol in volume_sum]
        for equity in equities:
            volume = volume_sum.loc[equity.symbol]
            equity.relative_volume = volume / equity.volume_sma.current.value if equity.volume_sma.is_ready else None
            equity.volume_sma.update(self.time, volume)
        if self.is_warming_up:
            return

        # Filter 1: Select assets with abnormally high volume for the day so far. (Relative Volume > 100%)
        equities = [equity for equity in equities if equity.relative_volume and equity.relative_volume > 1]
        if not equities:
            return


        # Filter 2: Select the top 20 assets with the greatest Relative Volume.
        equities = sorted(equities, key=lambda equity: equity.relative_volume)[-self._max_positions:]
        
        history = history.loc[[equity.symbol for equity in equities]]
        open_by_symbol = history.open.unstack(0).iloc[0]
        close_by_symbol = history.close.unstack(0).iloc[-1]
        high_by_symbol = history.high.unstack(0).max()
        low_by_symbol = history.low.unstack(0).min()

        # Create orders for the target assets.
        # Calculate position sizes so that if you fill an order at the high (low) of the first 5-minute bar 
        # and hit a stop loss based on 10% of the ATR, you only lose x% of portfolio value.    
        orders = []
        
        for symbol in close_by_symbol[close_by_symbol > open_by_symbol].index:
            equity = self.securities[symbol]
            orders.append({
                'equity': equity, 
                'entry_price': high_by_symbol.loc[equity.symbol], 
                'stop_price': high_by_symbol.loc[equity.symbol] - self._stop_loss_atr_distance * equity.atr.current.value  # stop price
            })


        for symbol in close_by_symbol[close_by_symbol < open_by_symbol].index:
            equity = self.securities[symbol]
            orders.append({
                'equity': equity, 
                'entry_price': low_by_symbol.loc[equity.symbol], 
                'stop_price': low_by_symbol.loc[equity.symbol] + self._stop_loss_atr_distance * equity.atr.current.value
            })

        for order in orders:
            equity = order['equity']
            self._selected.append(equity)
            self._create_empty_order_tickets(equity)
            self.add_security(equity.symbol, leverage=self._leverage)
            quantity = int((self._stop_loss_risk_size * self.portfolio.total_portfolio_value) / (order['entry_price'] - order['stop_price']))
            quantity_limit = self.calculate_order_quantity(equity.symbol, 4/self._max_positions)
            quantity = min(abs(quantity), quantity_limit) * np.sign(quantity)
            if quantity:
                equity.stop_loss_price = order['stop_price']
                equity.entry_ticket = self.stop_market_order(equity.symbol, quantity, order['entry_price'], tag='Entry')

    def on_data(self, data):
        self._update_stop_loss()

        # Get the current close price for the benchmark (SPY)
        benchmark = self.Securities["SPY"].Close
  
        # If we had a previous close, update our benchmark performance.
        if self.lastBenchmarkValue is not None and self.lastBenchmarkValue != 0:
            self.BenchmarkPerformance = self.BenchmarkPerformance * (benchmark / self.lastBenchmarkValue)
  
        # Save the current close price for the next update
        self.lastBenchmarkValue = benchmark

        self.Plot("Strategy vs Benchmark", "Portfolio Value", self.Portfolio.TotalPortfolioValue)
        self.Plot("Strategy vs Benchmark", "Benchmark", self.BenchmarkPerformance)
  

    def _update_stop_loss(self):
        # Only update stop loss for securities currently in the portfolio
        open_positions = [equity for equity in self._selected if equity.symbol in self.Portfolio and self.Portfolio[equity.symbol].Invested]

        if not open_positions:
            return

        # Update stop loss dynamically based on the last 30-minute high
        symbols = [equity.symbol for equity in open_positions]
        history = self.history(symbols, 60, Resolution.MINUTE)  # Fetch 30-minute data
        high_by_symbol_30min = history.high.unstack(0).max()  # High of the last 30 minutes
        low_by_symbol_30min = history.high.unstack(0).min()

        for equity in open_positions:

            # Only update the stop loss if the new stop loss is higher (for long positions)
            if self.Portfolio[equity.symbol].Quantity > 0:
               # Calculate the new stop loss based on the latest 30-minute high
                new_stop_loss = high_by_symbol_30min.loc[equity.symbol] - self._stop_loss_atr_distance * equity.atr.current.value
                if new_stop_loss > equity.stop_loss_price:

                    # Cancel the existing stop loss order
                    if equity.stop_loss_ticket is not None:
                        equity.stop_loss_ticket.Cancel()

                    # Submit a new stop loss order
                    quantity = self.Portfolio[equity.symbol].Quantity
                    equity.stop_loss_ticket = self.StopMarketOrder(equity.symbol, -quantity, new_stop_loss, tag='ATR Stop')

                    # Update the stored stop loss price
                    equity.stop_loss_price = new_stop_loss

            # For short positions, stop loss would be lower
            elif self.Portfolio[equity.symbol].Quantity < 0:
                # Calculate the new stop loss based on the latest 30-minute low
                new_stop_loss = low_by_symbol_30min.loc[equity.symbol] + self._stop_loss_atr_distance * equity.atr.current.value
                if new_stop_loss < equity.stop_loss_price:
                    # Cancel the existing stop loss order
                    if equity.stop_loss_ticket is not None:
                        equity.stop_loss_ticket.Cancel()

                    # Submit a new stop loss order
                    quantity = self.Portfolio[equity.symbol].Quantity
                    equity.stop_loss_ticket = self.StopMarketOrder(equity.symbol, -quantity, new_stop_loss, tag='ATR Stop')

                    # Update the stored stop loss price
                    equity.stop_loss_price = new_stop_loss
    
    def on_order_event(self, order_event: OrderEvent) -> None:
        if order_event.status != OrderStatus.FILLED:
            return
        security = self.securities[order_event.symbol]
        # When the entry order is hit, place the exit order: Stop loss based on ATR.
        if order_event.ticket == security.entry_ticket:
            security.stop_loss_ticket = self.stop_market_order(order_event.symbol, -security.entry_ticket.quantity, security.stop_loss_price, tag='ATR Stop')
        # When the stop loss order is hit, cancel the MOC order.
        elif order_event.ticket == security.stop_loss_ticket:
            self._create_empty_order_tickets(security)

    # Create some members on the Equity object to store each order ticket.
    def _create_empty_order_tickets(self, equity):
        equity.entry_ticket = None
        equity.stop_loss_ticket = None

    # Liquidate the portfolio, remove order tickets, remove the minute-resolution data subscriptions.
    def _exit(self):
        self.liquidate()
        for equity in self._selected:
            self._create_empty_order_tickets(equity)
            self.remove_security(equity.symbol)
        self._selected = []