Overall Statistics |
Total Trades 79 Average Win 0.27% Average Loss -0.88% Compounding Annual Return 14.980% Drawdown 8.200% Expectancy 0.019 Net Profit 205.709% Sharpe Ratio 1.422 Loss Rate 22% Win Rate 78% Profit-Loss Ratio 0.31 Alpha 0.02 Beta 6.215 Annual Standard Deviation 0.099 Annual Variance 0.01 Information Ratio 1.226 Tracking Error 0.099 Treynor Ratio 0.023 Total Fees $79.00 |
import numpy as np ### <summary> # All Weather Portfolio # --------------------------------------------- # Strategy Author: Ray Dalio # Source: Tony Robbins / Money, master the game # ---------------------------------------------- ### </summary> class BasicTemplateAlgorithm(QCAlgorithm): '''Basic template algorithm simply initializes the date range and cash''' def Initialize(self): '''Initialise the data and resolution required, as well as the cash and start-end dates for your algorithm. All algorithms must initialized.''' self.SetStartDate(2011,1,1) #Set Start Date self.SetEndDate(2019,1,1) #Set End Date self.SetCash(10000) #Set Strategy Cash # Dividend Handling self.raw_handling = True # Simulate topping up your account with savings every period self.savings_on = True self.savings_amt = 1000 # This is to stop us adding savings on the first rebalance as it is # immediately after starting the algo self.first_rebalance = True # This dictionary will be looped through to add equities and setholdings # It can be expanded to hold more ETF's/Equities. self.all_weather = { "Equity 1":{ "Ticker": "VOO", # Vanguard S&P 500 ETF "Weight": 0.15, }, "Equity 2":{ "Ticker": "VEA", # Vanguard FTSE Developed Markets ETF "Weight": 0.15, }, "Bonds Med-Term":{ "Ticker": "IEF", # iShares 7-10 Year Treasury Bond ETF "Weight": 0.15, }, "Bonds Long-Term":{ "Ticker": "TLT", # iShares 20+ Year Treasury Bond ETF "Weight": 0.4, }, "Commodity 1":{ "Ticker": "GLD", # SPDR Gold Trust "Weight": 0.075, }, "Commodity 2":{ "Ticker": "USO", # United States Oil Fund "Weight": 0.075, }, } # Setup IB Broker simulation self.SetBrokerageModel(BrokerageName.InteractiveBrokersBrokerage) # Add The ETF'S! # --------------- for key, asset in self.all_weather.items(): self.AddEquity(asset["Ticker"], Resolution.Daily) # Set Dividend Handling Method # ---------------------------- # https://www.quantconnect.com/forum/discussion/508/update-dividends-splits-and-custom-price-normalization/p1 if self.raw_handling: self.Securities[asset["Ticker"]].SetDataNormalizationMode(DataNormalizationMode.Raw) else: self.Securities[asset["Ticker"]].SetDataNormalizationMode(DataNormalizationMode.TotalReturn) # We will assume that if we can place an order for the Equity, then the other # ETF's should be fine. self.Schedule.On(self.DateRules.MonthStart(self.all_weather["Equity 1"]["Ticker"]), self.TimeRules.AfterMarketOpen(self.all_weather["Equity 1"]["Ticker"]), self.Rebalance) def OnData(self, data): '''OnData event is the primary entry point for your algorithm. Each new data point will be pumped in here. Arguments: data: Slice object keyed by symbol containing the stock data ''' # Log any dividends received. # --------------------------- for kvp in data.Dividends: # update this to Dividends dictionary div_ticker = kvp.Key div_distribution = kvp.Value.Distribution div_total_value = div_distribution * self.Portfolio[div_ticker].Quantity self.Log("DIVIDEND >> {0} - ${1} - ${2}".format(div_ticker, div_distribution, div_total_value)) def Rebalance(self): month = self.Time.month # Return if we don't want to rebalance this month # Add extra months in here to rebalance more often # i.e for March insert 3 into the list. if month not in [1,6]: return self.Log('-------------------->>') self.Log("{0} RE-BALANCE >> Total Value {1} | Cash {2}".format( self.Time.strftime('%B').upper(), self.Portfolio.TotalPortfolioValue, self.Portfolio.Cash)) if self.savings_on and not self.first_rebalance: cash_after_savings = self.Portfolio.Cash + self.savings_amt self.Log("Top Up Savings >> New Cash Balance {0}".format( cash_after_savings)) self.Portfolio.SetCash(cash_after_savings) # Rebalance! for key, asset in self.all_weather.items(): holdings = self.Portfolio[asset["Ticker"]].Quantity price = self.Portfolio[asset["Ticker"]].Price self.Log("{0} >> Current Holdings {1} | Current Price {2}".format( self.Portfolio[asset["Ticker"]].Symbol, holdings, price)) self.SetHoldings(asset["Ticker"], asset["Weight"]) self.Log('-------------------->>') # Set first rebalance to False so we add the savings next time around # (if turned on) self.first_rebalance = False