Overall Statistics |
Total Trades 1 Average Win 0% Average Loss 0% Compounding Annual Return 3053.437% Drawdown 3.000% Expectancy 0 Net Profit 1.908% Sharpe Ratio 12.298 Loss Rate 0% Win Rate 0% Profit-Loss Ratio 0 Alpha 0.559 Beta 113.013 Annual Standard Deviation 0.13 Annual Variance 0.017 Information Ratio 12.247 Tracking Error 0.13 Treynor Ratio 0.014 Total Fees $298.35 |
import numpy as np ### <summary> ### Basic template algorithm simply initializes the date range and cash. This is a skeleton ### framework you can use for designing an algorithm. ### </summary> class BasicTemplateAlgorithm(QCAlgorithm): '''Basic template algorithm simply initializes the date range and cash''' def Initialize(self): '''Initialise the data and resolution required, as well as the cash and start-end dates for your algorithm. All algorithms must initialized.''' self.SetStartDate(2018,6,1) #Set Start Date self.SetEndDate(2018,6,2) #Set End Date self.SetCash(100000) #Set Strategy Cash self.SetBrokerageModel(BrokerageName.GDAX, AccountType.Cash) self.AddCrypto("BTCUSD", Resolution.Minute) self.period = 20 self.SetWarmUp(2000) # ...other initialization... consolidator = TradeBarConsolidator(TimeSpan.FromMinutes(15)) consolidator.DataConsolidated += self.OnDataConsolidated self.SubscriptionManager.AddConsolidator("BTCUSD", consolidator) self._atr = AverageTrueRange("BTCUSD", self.period) self.RegisterIndicator("BTCUSD", self._atr, consolidator) self.PlotIndicator("ATR", self._atr) def OnDataConsolidated(self, sender, bar): self.Debug(str(self.Time) + " > New Bar!") self.Debug(str(bar.High)) self.Debug(str(bar.Low)) self.Debug(str(bar.Open)) self.Debug(str(bar.Close)) if not self.Portfolio.Invested: self.SetHoldings("BTCUSD", 1) def OnData(self, data): pass #if self._atr.IsReady: #self.Plot("Indicators", self._atr);