Created with Highcharts 12.1.2EquityJan 2019Jan…Jul 2019Jan 2020Jul 2020Jan 2021Jul 2021Jan 2022Jul 2022Jan 2023Jul 2023Jan 2024Jul 2024Jan 20250500k1,000k-500010120250M500M05M10M405060
Overall Statistics
Total Orders
127
Average Win
21.77%
Average Loss
-7.00%
Compounding Annual Return
93.688%
Drawdown
46.100%
Expectancy
1.348
Start Equity
10000
End Equity
522782.44
Net Profit
5127.824%
Sharpe Ratio
1.554
Sortino Ratio
1.456
Probabilistic Sharpe Ratio
73.161%
Loss Rate
43%
Win Rate
57%
Profit-Loss Ratio
3.11
Alpha
0.66
Beta
0.673
Annual Standard Deviation
0.471
Annual Variance
0.222
Information Ratio
1.356
Tracking Error
0.461
Treynor Ratio
1.087
Total Fees
$5952.97
Estimated Strategy Capacity
$400000000.00
Lowest Capacity Asset
MSTR RBGP9S2961YD
Portfolio Turnover
5.81%
from AlgorithmImports import *
from sklearn.linear_model import LinearRegression  # Linear Regression Model uses the features -SMA, RSI, MACD, HV
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
import numpy as np
import pandas as pd

# Custom fee model for 0.1% per trade
class PercentageFeeModel(FeeModel):
    def GetOrderFee(self, parameters):
        security = parameters.Security
        order = parameters.Order
        fee = 0.001 * security.Price * abs(order.Quantity)
        currency = security.QuoteCurrency.Symbol
        return OrderFee(CashAmount(fee, currency))

class MLTradingAlgorithm(QCAlgorithm):
    
    def Initialize(self):
        # Algorithm Parameters
        self.SetStartDate(2019, 1, 1)         # Start date
        self.SetEndDate(2024, 12, 31)         # End date
        self.SetCash(10000)                   # Initial capital

        # Configurable ticker symbols and allocation percentage
        self.trading_ticker = self.GetParameter("trading_ticker", "MSTR")
        self.benchmark_ticker = self.GetParameter("benchmark_ticker", "SPY")
        self.allocation_percentage = self.GetParameter("allocation_percentage", 1)

        # Add trading equity with custom fee and slippage models
        trading_security = self.AddEquity(self.trading_ticker, Resolution.Daily)
        trading_security.SetFeeModel(PercentageFeeModel())
        trading_security.SetSlippageModel(ConstantSlippageModel(0))
        self.symbol = trading_security.Symbol
        
        # Add benchmark equity with custom fee and slippage models
        benchmark_security = self.AddEquity(self.benchmark_ticker, Resolution.Daily)
        benchmark_security.SetFeeModel(PercentageFeeModel())
        benchmark_security.SetSlippageModel(ConstantSlippageModel(0))
        self.benchmark_symbol = benchmark_security.Symbol

        # RollingWindow to store 200 days of TradeBar data for trading asset
        self.data = RollingWindow[TradeBar](200)

        # Warm-up period
        self.SetWarmUp(200)

        # Initialize Linear Regression model  # Changed from RandomForestClassifier
        self.model = LinearRegression()
        self.training_count = 0
        self.is_model_trained = False  # Tracks if the model is trained

        # Schedule training every Monday at 10:00 AM
        self.Schedule.On(self.DateRules.Every(DayOfWeek.Monday), 
                         self.TimeRules.At(10, 0), 
                         self.TrainModel)
        
        # Initialize variables for benchmarking
        self.beat_benchmark_count = 0
        self.trade_entry_price = None  # To store the entry price of a trade
        self.benchmark_entry_price = None  # To store the benchmark price at trade entry
    
    def OnData(self, data):
        # Ensure data exists for trading symbol
        if not data.ContainsKey(self.symbol):
            return
        
        trade_bar = data[self.symbol]
        if trade_bar is None:
            return
        
        # Add TradeBar to Rolling Window
        self.data.Add(trade_bar)

        # Check if RollingWindow is ready
        if not self.data.IsReady or self.data.Count < 200:
            return
        
        # Ensure model is trained before making predictions
        if not self.is_model_trained:
            self.Debug("Model is not trained yet. Skipping prediction.")
            return

        # Extract features for prediction
        df = self.GetFeatureDataFrame()
        if df is None or len(df) < 1:
            return
        
        latest_features = df.iloc[-1, :-1].values.reshape(1, -1)
        
        # Make predictions using threshold
        try:
            pred_value = self.model.predict(latest_features)[0]  # Changed from predict_proba
            prediction = 1 if pred_value > 0.5 else 0
        except Exception as e:
            self.Debug(f"Error: Model prediction failed. {e}")
            return
        
        # Trading logic
        holdings = self.Portfolio[self.symbol].Quantity
        
        # Buy if prediction = 1 and not currently invested
        if prediction == 1 and holdings <= 0:
            self.SetHoldings(self.symbol, self.allocation_percentage)
            # Record the entry prices for the trade and benchmark
            self.trade_entry_price = trade_bar.Close
            if self.benchmark_symbol in data and data[self.benchmark_symbol] is not None:
                self.benchmark_entry_price = data[self.benchmark_symbol].Close
            else:
                self.benchmark_entry_price = None
        
        # Sell if prediction = 0 and currently invested
        elif prediction == 0 and holdings > 0:
            # Calculate trade return and benchmark return
            if self.trade_entry_price is not None and self.benchmark_entry_price is not None:
                trade_exit_price = trade_bar.Close
                trade_return = (trade_exit_price - self.trade_entry_price) / self.trade_entry_price
                
                if self.benchmark_symbol in data and data[self.benchmark_symbol] is not None:
                    benchmark_exit_price = data[self.benchmark_symbol].Close
                    benchmark_return = (benchmark_exit_price - self.benchmark_entry_price) / self.benchmark_entry_price
                    
                    # Compare trade return with benchmark return
                    if trade_return > benchmark_return:
                        self.beat_benchmark_count += 1
            
            # Reset entry prices after the trade is closed
            self.trade_entry_price = None
            self.benchmark_entry_price = None
            
            # Execute the sell order
            self.Liquidate(self.symbol)

    def TrainModel(self):
        # Prepare training data
        df = self.GetFeatureDataFrame()
        if df is None or len(df) < 50:  # Require enough data to train
            self.Debug("Insufficient data for training.")
            return

        # Split data chronologically (no shuffle)
        X = df.iloc[:, :-1]  # Features
        y = df.iloc[:, -1]   # Target (0 or 1)
        
        X_train, X_test, y_train, y_test = train_test_split(
            X, y, test_size=0.2, shuffle=False, random_state=42
        )

        # Train Linear Regression model  # Changed from RandomForestClassifier
        self.model.fit(X_train, y_train)
        self.is_model_trained = True

        # Evaluate model performance
        y_train_pred = self.model.predict(X_train)  # Changed from predict_proba
        y_train_pred_binary = [1 if val > 0.5 else 0 for val in y_train_pred]
        train_accuracy = accuracy_score(y_train, y_train_pred_binary)

        y_test_pred = self.model.predict(X_test)  # Changed from predict_proba
        y_test_pred_binary = [1 if val > 0.5 else 0 for val in y_test_pred]
        test_accuracy = accuracy_score(y_test, y_test_pred_binary)
        
        self.training_count += 1
        self.Debug(f"Training #{self.training_count}: "
                   f"Train Accuracy: {train_accuracy:.2%}, "
                   f"Test Accuracy: {test_accuracy:.2%}")

    def GetFeatureDataFrame(self):
        # Wait until we have 200 data points in the rolling window
        if self.data.Count < 200:
            return None
        
        # Convert rolling window data to a DataFrame
        close_prices = [bar.Close for bar in self.data]
        df = pd.DataFrame(close_prices, columns=["Close"])
        
        # Feature Engineering
        df["SMA_10"] = df["Close"].rolling(window=10).mean()
        df["SMA_50"] = df["Close"].rolling(window=50).mean()
        
        # RSI Calculation
        delta = df["Close"].diff()
        gain = (delta.where(delta > 0, 0)).rolling(14).mean()
        loss = (-delta.where(delta < 0, 0)).rolling(14).mean()
        rs = gain / loss
        df["RSI"] = 100 - (100 / (1 + rs))
        
        # MACD Calculation
        df["MACD"] = df["Close"].ewm(span=12, adjust=False).mean() - df["Close"].ewm(span=26, adjust=False).mean()
        df["MACD_Signal"] = df["MACD"].ewm(span=9, adjust=False).mean()

        # Historical Volatility (HV_30)
        df["HV_30"] = df["Close"].pct_change().rolling(window=30).std() * np.sqrt(252)

        # Define Target: 1 if next day's Close > today's Close, else 0
        df["Target"] = (df["Close"].shift(-1) > df["Close"]).astype(int)
        
        # Remove rows with NaN values
        df.dropna(inplace=True)

        return df
    
    def OnEndOfAlgorithm(self):
        # Print the number of times the strategy beat the benchmark
        self.Log(f"Number of times strategy beat {self.benchmark_ticker}: {self.beat_benchmark_count}")