Overall Statistics |
Total Trades 0 Average Win 0% Average Loss 0% Compounding Annual Return 0% Drawdown 0% Expectancy 0 Net Profit 0% Sharpe Ratio 0 Loss Rate 0% Win Rate 0% Profit-Loss Ratio 0 Alpha 0 Beta 0 Annual Standard Deviation 0 Annual Variance 0 Information Ratio 0 Tracking Error 0 Treynor Ratio 0 Total Fees $0.00 |
import numpy as np from datetime import timedelta ### <summary> ### Basic template algorithm simply initializes the date range and cash. This is a skeleton ### framework you can use for designing an algorithm. ### </summary> class BasicTemplateAlgorithm(QCAlgorithm): '''Basic template algorithm simply initializes the date range and cash''' def Initialize(self): '''Initialise the data and resolution required, as well as the cash and start-end dates for your algorithm. All algorithms must initialized.''' self.SetStartDate(2018,8, 1) #Set Start Date self.SetEndDate(2018,8,7) #Set End Date self.SetCash(100000) #Set Strategy Cash # Find more symbols here: http://quantconnect.com/data self.AddEquity("IBM", Resolution.Daily) self.rsi = self.RSI("IBM", 14, Resolution.Daily) self.AverageLossWin = RollingWindow[Decimal](3) self.AverageGainWin = RollingWindow[Decimal](3) self.rsiWin = RollingWindow[Decimal](3) self.SetWarmUp(timedelta(days= 20)) def OnData(self, data): if self.IsWarmingUp: return self.AverageLossWin.Add(self.rsi.AverageLoss.Current.Value) self.AverageGainWin.Add(self.rsi.AverageGain.Current.Value) self.rsiWin.Add(self.rsi.Current.Value) if self.rsiWin.IsReady: self.Debug(self.AverageLossWin[0])