Overall Statistics |
Total Orders 7563 Average Win 0.52% Average Loss -0.33% Compounding Annual Return 7.007% Drawdown 24.400% Expectancy 0.074 Start Equity 100000 End Equity 209213.13 Net Profit 109.213% Sharpe Ratio 0.262 Sortino Ratio 0.293 Probabilistic Sharpe Ratio 0.721% Loss Rate 59% Win Rate 41% Profit-Loss Ratio 1.60 Alpha 0.005 Beta 0.422 Annual Standard Deviation 0.15 Annual Variance 0.023 Information Ratio -0.258 Tracking Error 0.161 Treynor Ratio 0.093 Total Fees $0.00 Estimated Strategy Capacity $1100000.00 Lowest Capacity Asset SHY SGNKIKYGE9NP Portfolio Turnover 193.14% |
# region imports from AlgorithmImports import * # endregion # Source: https://www.investopedia.com/articles/trading/04/091504.asp class KellyCriterionSMACrossoverAlgorithm(QCAlgorithm): def initialize(self): self.set_start_date(2014, 1, 1) # Remove fees to focus the research on the portfolio weighting, not the signal. self.set_security_initializer(lambda s: s.set_fee_model(ConstantFeeModel(0))) # Add the risky and risk-free assets. self._risk_asset = self.add_equity('IBM', Resolution.HOUR, leverage=6) self._rf_asset = self.add_equity('SHY', Resolution.HOUR, leverage=6) # Add some strategy-specific indicators/variables. self._risk_asset.short_sma = self.sma(self._risk_asset.symbol, 1) self._risk_asset.long_sma = self.sma(self._risk_asset.symbol, 6) # Create the KellyCriterion object. self._risk_asset.signal = 0 self._kelly_criterion = KellyCriterion(1.5, 40) # Add a warm-up period so we some historical performance of the strategy once we start trading. self.set_warm_up(timedelta(365)) # Add a list and Scheduled Event to track the average exposure to the risky asset. self._risky_weights = [] self.schedule.on(self.date_rules.every_day(self._risk_asset.symbol), self.time_rules.at(23, 59), self._sample_weight) def on_data(self, data: Slice): # Wait until the market is open. if not data.bars or not self.is_market_open(self._risk_asset.symbol): return # Pass the latest signal to the KellyCriterion object. if not self._risk_asset.signal and self._risk_asset.short_sma > self._risk_asset.long_sma: self._risk_asset.signal = 1 self._kelly_criterion.update_signal(1, self._risk_asset.price) elif self._risk_asset.signal and self._risk_asset.short_sma < self._risk_asset.long_sma: self._risk_asset.signal = 0 self._kelly_criterion.update_signal(0, self._risk_asset.price) # Wait until we can trade. if self.is_warming_up or not self._kelly_criterion.is_ready: return # Update the portfolio holdings based on the signal. if self._risk_asset.signal and not self._risk_asset.holdings.is_long: # Cap the exposure at 575% to avoid errors. weight = min(5.75, self._kelly_criterion.weight()) self.set_holdings( [ PortfolioTarget(self._risk_asset.symbol, weight), # If the target weight for the risky asset is <1, then raise the porfolio # exposure to 100% with the risk-free asset. PortfolioTarget(self._rf_asset.symbol, 0 if weight > 1 else 1-weight) ] ) elif not self._risk_asset.signal and self._risk_asset.holdings.is_long: # If the signal is 0, put 100% of the portfolio in the risk-free asset. self.set_holdings([PortfolioTarget(self._rf_asset.symbol, 1)], True) def _sample_weight(self): self._risky_weights.append(self._risk_asset.holdings.holdings_value / self.portfolio.total_portfolio_value) def on_end_of_algorithm(self): self.log(f"Average weight: {sum(self._risky_weights) / len(self._risky_weights)}") class KellyCriterion: def __init__(self, factor, period): self._factor = factor self._period = period self._trades = np.array([]) def update_signal(self, signal, price): if signal: # Enter self._entry_price = price else: # Exit self._trades = np.append(self._trades, [price - self._entry_price])[-self._period:] def weight(self): # Wait until there are enough trade samples. if not self.is_ready: return None # Calculate the Kelly %. wins = self._trades[self._trades > 0] losses = self._trades[self._trades < 0] if not losses.sum(): return self._factor if not wins.sum(): return 0 win_loss_ratio = wins.mean() / losses.mean() winning_probability = len(wins) / self._period return self._factor*(winning_probability - (1-winning_probability)/win_loss_ratio) @property def is_ready(self): return len(self._trades) == self._period