Overall Statistics |
Total Trades 2 Average Win 0% Average Loss 0% Compounding Annual Return 0% Drawdown 0% Expectancy 0 Net Profit 0% Sharpe Ratio 0 Probabilistic Sharpe Ratio 0% Loss Rate 0% Win Rate 0% Profit-Loss Ratio 0 Alpha 0 Beta 0 Annual Standard Deviation 0 Annual Variance 0 Information Ratio 0 Tracking Error 0 Treynor Ratio 0 Total Fees $5.06 Estimated Strategy Capacity $2700000.00 Lowest Capacity Asset TYH U8JOSZGR4OKL Portfolio Turnover 36.83% |
#region imports from AlgorithmImports import * #endregion # Your New Python File
from indicators import RSI, SMA, CumReturn, AH from project.main import YellowCatStrat class TQQQFTLTStrategy(YellowCatStrat): def __init__(self, algorithm): super().__init__() self.algorithm = algorithm def Execute(self): if self.algorithm.Securities['SPY'].Price > SMA(self.algorithm, 'SPY', 200): if RSI(self.algorithm, 'TQQQ', 10) > 78: AH(self.algorithm, ['SPXU', 'UVXY', 'SQQQ'], 1, 0.33) else: if RSI(self.algorithm, 'SPXL', 10) > 79: AH(self.algorithm, ['SPXU', 'UVXY', 'SQQQ'], 1, 0.33) else: if CumReturn(self.algorithm, 'TQQQ', 4) > 0.2: if RSI(self.algorithm, 'TQQQ', 10) < 31: AH(self.algorithm, 'TQQQ', 1, 1) else: if RSI(self.algorithm, 'UVXY', 10) > RSI(self.algorithm, 'SQQQ', 10): AH(self.algorithm, ['SPXU', 'UVXY', 'SQQQ'], 1, 0.33) else: AH(self.algorithm, 'SQQQ', 1, 1) else: AH(self.algorithm, 'TQQQ', 1, 1) else: if RSI(self.algorithm, 'TQQQ', 10) < 31: AH(self.algorithm, 'TECL', 1, 1) else: if RSI(self.algorithm, 'SMH', 10) < 30: AH(self.algorithm, 'SOXL', 1, 1) else: if RSI(self.algorithm, 'DIA', 10) < 27: AH(self.algorithm, 'UDOW', 1, 1) else: if RSI(self.algorithm, 'SPY', 14) < 28: AH(self.algorithm, 'UPRO', 1, 1) else: self.Group1() self.Group2() def Group1(self): if CumReturn(self.algorithm, 'QQQ', 200) < -0.2: if self.algorithm.Securities['QQQ'].Price < SMA(self.algorithm, 'QQQ', 20): if CumReturn(self.algorithm, 'QQQ', 60) < -0.12: self.algorithm.Group5() self.algorithm.Group6() else: if RSI(self.algorithm, 'TLT', 10) > RSI(self.algorithm, 'SQQQ', 10): AH(self.algorithm, 'TQQQ', 1, 0.5) else: AH(self.algorithm, 'SQQQ', 1, 0.5) else: if RSI(self.algorithm, 'SQQQ', 10) < 31: AH(self.algorithm, 'PSQ', 1, 0.5) else: if CumReturn(self.algorithm, 'QQQ', 9) > 0.055: AH(self.algorithm, 'PSQ', 1, 0.5) else: if RSI(self.algorithm, 'TQQQ', 10) > RSI(self.algorithm, 'SOXL', 10): AH(self.algorithm, 'TQQQ', 1, 0.5) else: AH(self.algorithm, 'SOXL', 1, 0.5) def Group2(self): if self.algorithm.Securities['QQQ'].Price < SMA(self.algorithm, 'QQQ', 20): if CumReturn(self.algorithm, 'QQQ', 60) < -0.12: self.algorithm.Group3() self.algorithm.Group4() else: if RSI(self.algorithm, 'TLT', 10) > RSI(self.algorithm, 'SQQQ', 10): AH(self.algorithm, 'TQQQ', 1, 0.5) else: AH(self.algorithm, 'SQQQ', 1, 0.5) else: if self.algorithm.RSI('TQQQ', 10) > self.algorithm.RSI('SOXL', 10): AH(self.algorithm, 'TQQQ', 1, 0.5) else: AH(self.algorithm, 'SOXL', 1, 0.5) def Group3(self): if self.algorithm.Securities['SPY'].Price > SMA(self.algorithm, 'SPY', 20): AH(self.algorithm, 'SPY', 1, 0.25) else: if RSI(self.algorithm, 'TLT', 10) > RSI(self.algorithm, 'SQQQ', 10): AH(self.algorithm, 'QQQ', 1, 0.25) else: AH(self.algorithm, 'PSQ', 1, 0.25) def Group4(self): if RSI(self.algorithm, 'TLT', 10) > RSI(self.algorithm, 'SQQQ', 10): AH(self.algorithm, 'QQQ', 1, 0.25) else: AH(self.algorithm, 'PSQ', 1, 0.25) def Group5(self): if self.algorithm.Securities['SPY'].Price > SMA(self.algorithm, 'SPY', 20): AH(self.algorithm, 'SPY', 1, 0.25) else: if RSI(self.algorithm, 'TLT', 10) > RSI(self.algorithm, 'SQQQ', 10): AH(self.algorithm, 'QQQ', 1, 0.25) else: AH(self.algorithm, 'PSQ', 1, 0.25) def Group6(self): if RSI(self.algorithm, 'TLT', 10) > RSI(self.algorithm, 'SQQQ', 10): AH(self.algorithm, 'QQQ', 1, 0.25) else: AH(self.algorithm, 'PSQ', 1, 0.25)
#region imports from AlgorithmImports import * #endregion # Your New Python File
from indicators import RSI, CumReturn, MaxDD, SMA, STD, IV, SMADayRet, EMA, Sort, AH from project.main import YellowCatStrat class TQQQorNotStrategy(YellowCatStrat): def __init__(self, algorithm): super().__init__() self.algorithm = algorithm def Execute(self): if RSI(self.algorithm,'TQQQ',10) > 78: AH(self.algorithm,['SPXU','UVXY','SQQQ'],3,1/3) else: if CumReturn(self.algorithm,'TQQQ',6) < -0.12: if CumReturn(self.algorithm,'TQQQ',1) > 0.055: AH(self.algorithm,['SPXU','UVXY','SQQQ'],3,1/3) else: if RSI(self.algorithm,'TQQQ',10) < 32: AH(self.algorithm,'TQQQ',3,1) else: if MaxDD(self.algorithm,'TMF',10)<0.07: AH(self.algorithm,'TQQQ',3,1) else: AH(self.algorithm,'BIL',3,1) else: if MaxDD(self.algorithm,'QQQ',10)>0.06: AH(self.algorithm,'BIL',3,1) else: if MaxDD(self.algorithm,'TMF',10)>0.07: AH(self.algorithm,'BIL',3,1) else: if self.algorithm.Securities['QQQ'].Price > self.algorithm.SMA('QQQ',25): AH(self.algorithm,'TQQQ',3,1) else: if RSI(self.algorithm,'SPY',60) > 50: if RSI(self.algorithm,'BND',45) > RSI(self.algorithm,'SPY',45): AH(self.algorithm,'TQQQ',3,1) else: AH(self.algorithm,'BIL',3,1) else: if RSI(self.algorithm,'IEF',200) < RSI(self.algorithm,'TLT',200): if RSI(self.algorithm,'BND',45) > RSI(self.algorithm,'SPY',45): AH(self.algorithm,'TQQQ',3,1) else: AH(self.algorithm,'BIL',3,1) else: AH(self.algorithm,'BIL',3,1)
from AlgorithmImports import * import math import pandas as pd from cmath import sqrt from clr import AddReference AddReference("System") AddReference("QuantConnect.Algorithm") AddReference("QuantConnect.Common") from System import * from QuantConnect import * from QuantConnect.Algorithm import * from QuantConnect.Data.Custom import * from QuantConnect.Python import PythonData import csv import io import time import json def RSI(algorithm,equity,period): extension = min(period*5,250) r_w = RollingWindow[float](extension) history = algorithm.History(equity,extension - 1,Resolution.Daily) for historical_bar in history: r_w.Add(historical_bar.Close) while r_w.Count < extension: current_price = algorithm.Securities[equity].Price r_w.Add(current_price) if r_w.IsReady: average_gain = 0 average_loss = 0 gain = 0 loss = 0 for i in range(extension - 1,extension - period -1,-1): gain += max(r_w[i-1] - r_w[i],0) loss += abs(min(r_w[i-1] - r_w[i],0)) average_gain = gain/period average_loss = loss/period for i in range(extension - period - 1,0,-1): average_gain = (average_gain*(period-1) + max(r_w[i-1] - r_w[i],0))/period average_loss = (average_loss*(period-1) + abs(min(r_w[i-1] - r_w[i],0)))/period if average_loss == 0: return 100 else: rsi = 100 - (100/(1 + average_gain/average_loss)) return rsi else: return None def CumReturn(algorithm,equity,period): history = algorithm.History(equity,period,Resolution.Daily) closing_prices = pd.Series([bar.Close for bar in history]) current_price = algorithm.Securities[equity].Price closing_prices = closing_prices.append(pd.Series([current_price])) first_price = closing_prices.iloc[0] if first_price == 0: return None else: return_val = (current_price/first_price) - 1 return return_val def STD(algorithm,equity,period): r_w = RollingWindow[float](period + 1) r_w_return = RollingWindow[float](period) history = algorithm.History(equity,period,Resolution.Daily) for historical_bar in history: r_w.Add(historical_bar.Close) while r_w.Count < period + 1: current_price = algorithm.Securities[equity].Price r_w.Add(current_price) for i in range (period,0,-1): daily_return = (r_w[i-1]/r_w[i] - 1) r_w_return.Add(daily_return) dfstd = pd.DataFrame({'r_w_return':r_w_return}) if r_w.IsReady: std = dfstd['r_w_return'].std() if std == 0: return 0 else: return std else: return 0 def MaxDD(algorithm,equity,period): history = algorithm.History(equity,period - 1,Resolution.Daily) closing_prices = pd.Series([bar.Close for bar in history]) current_price = algorithm.Securities[equity].Price closing_prices = closing_prices.append(pd.Series([current_price])) rolling_max = closing_prices.cummax() drawdowns = (rolling_max - closing_prices)/rolling_max max_dd = drawdowns.min() return max_dd def SMA(algorithm,equity,period): r_w = RollingWindow[float](period) history = algorithm.History(equity,period - 1,Resolution.Daily) for historical_bar in history: r_w.Add(historical_bar.Close) while r_w.Count < period: current_price = algorithm.Securities[equity].Price r_w.Add(current_price) if r_w.IsReady: sma = sum(r_w)/period return sma else: return 0 def IV(algorithm,equity,period): r_w = RollingWindow[float](period + 1) r_w_return = RollingWindow[float](period) history = algorithm.History(equity,period,Resolution.Daily) for historical_bar in history: r_w.Add(historical_bar.Close) while r_w.Count < period + 1: current_price = algorithm.Securities[equity].Price r_w.Add(current_price) for i in range (period,0,-1): if r_w[i] == 0: return 0 else: daily_return = (r_w[i-1]/r_w[i] - 1) r_w_return.Add(daily_return) dfinverse = pd.DataFrame({'r_w_return':r_w_return}) if r_w.IsReady: std = dfinverse['r_w_return'].std() if std == 0: return 0 else: inv_vol = 1/std return inv_vol else: return 0 def SMADayRet(algorithm,equity,period): r_w = RollingWindow[float](period + 1) r_w_return = RollingWindow[float](period) history = algorithm.History(equity,period,Resolution.Daily) for historical_bar in history: r_w.Add(historical_bar.Close) while r_w.Count < period + 1: current_price = algorithm.Securities[equity].Price r_w.Add(current_price) for i in range (period,0,-1): if r_w[i] == 0: return None daily_return = (r_w[i-1]/r_w[i] - 1) r_w_return.Add(daily_return) if r_w.IsReady: smareturn = sum(r_w_return)/period return smareturn else: return 0 def EMA(algorithm,equity,period): extension = period + 50 r_w = RollingWindow[float](extension) history = algorithm.History(equity,extension - 1,Resolution.Daily) for historical_bar in history: r_w.Add(historical_bar.Close) while r_w.Count < extension: current_price = algorithm.Securities[equity].Price r_w.Add(current_price) if r_w.IsReady: total_price = 0 for i in range(extension - 1,extension - period - 2,-1): total_price += r_w[i] average_price = total_price/period for i in range(extension - period - 2,-1,-1): average_price = r_w[i]*2/(period+1) + average_price*(1-2/(period+1)) return average_price else: return None def Sort(algorithm,sort_type,equities,period,reverse,number,multiplier): algorithm.PT = getattr(algorithm,f"PT{number}") * multiplier returns = {} for equity in equities: returns[equity] = getattr(algorithm,sort_type)(equity,period) s_e = sorted([item for item in returns.items() if item[1] is not None],key = lambda x: x[1],reverse = reverse) t3e = s_e[:1] ht = getattr(algorithm,f"HT{number}") hts = getattr(algorithm,f"HTS{number}") for i in ht.keys(): if ht[i] == 0: ht[i] = algorithm.PT hts[i].append(t3e[0][0]) break setattr(algorithm,f"HT{number}",ht) setattr(algorithm,f"HTS{number}",hts) def AH(algorithm,equities,PTnumber,multiplier): #AppendHolding if not isinstance(equities,list): equities = [equities] HT = getattr(algorithm,f"HT{PTnumber}") HTS = getattr(algorithm,f"HTS{PTnumber}") PT = getattr(algorithm,f"PT{PTnumber}") * multiplier for equity in equities: for i in HT.keys(): if HT[i] == 0: HT[i] = PT HTS[i].append(equity) break
# main.py from AlgorithmImports import * from indicators import * class StrategyPerformanceTracker: def __init__(self): self.strategyReturns = {} # {strategyName: [daily returns]} def logDailyReturn(self, strategyName, dailyReturn): if strategyName not in self.strategyReturns: self.strategyReturns[strategyName] = [] self.strategyReturns[strategyName].append(dailyReturn) def calculateReturnsOverPeriod(self, strategyName, days): if strategyName in self.strategyReturns: return sum(self.strategyReturns[strategyName][-days:]) return None def rankStrategies(self, days, topN): performance = {strategy: self.calculateReturnsOverPeriod(strategy, days) for strategy in self.strategyReturns} rankedStrategies = sorted(performance.items(), key=lambda x: x[1], reverse=True) return rankedStrategies[:topN] class YellowCatStrat(QCAlgorithm): def Initialize(self): self.cash = 100000 self.buffer_pct = 0.02 self.SetStartDate(2023,10,27) self.SetEndDate(2023,10,27) self.SetCash(self.cash) self.equities = ['XENE','ARCT','CRSP','IMRX','NAMS','BPMC','IMUX','HOWL','AUTL','ETNB','SIMO','IEO','ATXS','SERA','VRTX','PNT','FUSN','PYXS','EXAI','ICVX','IOVA','CRBU','ROIV','XLF','CDTX','TRDA','CRVS','AKBA','EDC','SON','XLE','TWM','RWM','URTY','PBR','OIL','ROST','WMS','AAPD','TSLQ','TSLS','AAPB','ALGN','TPL','COIN','VLO','AA','BITI','HIBS','ACLS','EQT','MOS','AR','MU','CZR','UVIX','ENPH','AMEH','ERIC','GNRC','BULZ','VCIT','UDN','SARK','AMD','FNGU','TSLL','AEHR','MSTR','TARK','XLY','QQQE','VOOG','VOOV','VTV','HIBL','XLK','XLP','SVXY','QID','TBF','TSLA','LQD','VTIP','EDV','STIP','SPTL','IEI','USDU','SQQQ','VIXM','SPXU','QQQ','BSV','TQQQ','SPY','DBC','SHV','IAU','VEA','UTSL','UVXY','UPRO','EFA','EEM','TLT','SHY','GLD','SLV','USO','WEAT','CORN','SH','DRN','PDBC','COMT','KOLD','BOIL','ESPO','PEJ','UGL','URE','VXX','UUP','BND','BIL','DUST','JDST','JNUG','GUSH','DBA','DBB','COM','PALL','AGQ','BAL','WOOD','URA','SCO','UCO','DBO','TAGS','CANE','REMX','COPX','IEF','SPDN','CHAD','DRIP','SPUU','INDL','BRZU','ERX','ERY','CWEB','CHAU','KORU','MEXX','EDZ','EURL','YINN','YANG','TNA','TZA','SPXL','SPXS','MIDU','TYD','TYO','TMF','TMV','TECL','TECS','SOXL','SOXS','LABU','LABD','RETL','DPST','DRV','PILL','CURE','FAZ','FAS','EWA','EWGS','EWG','EWP','EWQ','EWU','EWJ','EWI','EWN','ECC','NURE','VNQI','VNQ','VDC','VIS','VGT','VAW','VPU','VOX','VFH','VHT','VDE','SMH','DIA','UDOW','PSQ','SOXX','VTI','COST','UNH','SPHB','BTAL','VIXY','WEBL','WEBS','UBT','PST','TLH','QLD','SQM','SSO','SD','DGRO','SCHD','SGOL','TIP','DUG','EWZ','TBX','VGIT','VGLT','CCOR','LBAY','NRGD','PHDG','SPHD','COWZ','CTA','DBMF','GDMA','VIGI','AGG','NOBL','FAAR','BITO','FTLS','MORT','FNDX','GLL','NTSX','RWL','VLUE','IJR','SPYG','VXUS','AAL','AEP','AFL','C','CMCSA','DUK','EXC','F','GM','GOOGL','INTC','JNJ','KO','MET','NWE','OXY','PFE','RTX','SNY','SO','T','TMUS','VZ','WFC','WMT','AMZN','MSFT','NVDA','TSM','BA','CB','COKE','FDX','GE','LMT','MRK','NVEC','ORCL','PEP','V','DBE','BRK-B','CRUS','INFY','KMLM','NSYS','SCHG','SGML','SLDP','ARKQ','XLU','XLV','ULTA','AAPL','AMZU','BAD','DDM','IYH','JPM','PM','XOM','EUO','YCS','MVV','USD','TMF','SPXL','EPI','IYK','CURE','DIG','XLU'] self.MKT = self.AddEquity("QQQ",Resolution.Daily).Symbol self.mkt = [] for equity in self.equities: self.AddEquity(equity,Resolution.Minute) self.Securities[equity].SetDataNormalizationMode(DataNormalizationMode.Adjusted) self.AddEquity('BIL',Resolution.Minute) self.Securities['BIL'].SetDataNormalizationMode(DataNormalizationMode.TotalReturn) from Strategies.TQQQFTLT.version1 import TQQQFTLTStrategy self.tqqqftltStrategy = TQQQFTLTStrategy(self) from Strategies.TQQQorNot.version1 import TQQQorNotStrategy self.tqqqorNotStrategy = TQQQorNotStrategy(self) self.PTMaster = 1 self.PT1 = 0.24*self.PTMaster #TQQQFTLT self.PT3 = 0.13*self.PTMaster #TQQQorNOT self.HT1 = {str(i).zfill(2): 0 for i in range(1,10)} self.HTS1 = {str(i).zfill(2): [] for i in range(1,10)} self.HT3 = {str(i).zfill(2): 0 for i in range(1,10)} self.HTS3 = {str(i).zfill(2): [] for i in range(1,10)} self.Schedule.On(self.DateRules.EveryDay("SPY"), self.TimeRules.BeforeMarketClose("SPY",2), self.FunctionBeforeMarketClose) def __init__(self): super().__init__() def FunctionBeforeMarketClose(self): # End of day trading function self.tqqqftltStrategy.Execute() self.tqqqorNotStrategy.Execute() self.ExecuteTrade() def OnData(self, data): # This function is called every time new data is received pass def ExecuteTrade(self): group1 = { 'HTS': [self.HTS1[i][0] if len(self.HTS1[i]) == 1 else self.HTS1[i] for i in self.HTS1], 'HT': [self.HT1[i] for i in self.HT1] } df1 = pd.DataFrame(group1) group3 = { 'HTS': [self.HTS3[i][0] if len(self.HTS3[i]) == 1 else self.HTS3[i] for i in self.HTS3], 'HT': [self.HT3[i] for i in self.HT3] } df3 = pd.DataFrame(group3) df = pd.concat([df1,df3]) df['HTS'] = df['HTS'].astype(str) result = df.groupby(['HTS']).sum().reset_index() # Dictionary with pairs pairs_dict = {'SOXL':'SOXS','TQQQ':'SQQQ','SPXL':'SPXS','WEBL':'WEBS','TECL':'TECS','UPRO':'SPXU','QQQ':'PSQ','SPY':'SH','TMV':'TMF','HIBL':'HIBS','BITO':'BITI','TSLA':'TSLS','AAPL':'AAPD','ERX':'ERY','BOIL':'KOLD'} pairs_dict.update({v: k for k,v in pairs_dict.items()}) #ensure both directions are covered # Track selling and buying processed_pairs_selling = set() processed_pairs_buying = set() liquidated_equities = set() # Exclude symbols exclude_symbols = ['BIL','BSV','SHV','SHY'] # dictionary symbol_dict = dict(zip(result.iloc[:,0],result.iloc[:,1])) # Log output output = "*****" for symbol, percentage in symbol_dict.items(): output += "{}: {}% - ".format(symbol, round(percentage*100, 2)) output = output.rstrip(" - ") self.Log(output) # Symbols to be transformed transform_symbols = ['PSQ','SH','USDU','SPXU','UPRO','QLD','QID','TSLS'] transform_mapping = {'PSQ':'SQQQ','SH':'SPXS','USDU':'UUP','SPXU':'SPXS','UPRO':'SPXL','QLD':'TQQQ','QID':'SQQQ','TSLS':'TSLQ'} transform_ratios = {'PSQ':3,'SH':3,'USDU':1,'SPXU':1,'UPRO':1,'QLD':1.5,'QID':1.5,'TSLS':1} # Transform symbols for symbol in transform_symbols: if symbol in symbol_dict: new_symbol = transform_mapping[symbol] ratio = transform_ratios[symbol] new_percentage = symbol_dict[symbol]/ratio # Adjust percentage allocation if new_symbol in symbol_dict: new_percentage += symbol_dict[new_symbol] symbol_dict[new_symbol] = new_percentage # Remove transformed symbol_dict.pop(symbol, None) # Ensure updated equities list updated_equities = set(symbol_dict.keys()) # Liquidate equities for equity in self.equities: if equity not in updated_equities and self.Portfolio[equity].HoldStock and equity not in liquidated_equities: self.Liquidate(equity) liquidated_equities.add(equity) # Iterate pairs selling for symbol1,symbol2 in pairs_dict.items(): if symbol1 in symbol_dict and symbol2 in symbol_dict: offset_value = abs(symbol_dict[symbol1] - symbol_dict[symbol2]) if symbol_dict[symbol1] >= symbol_dict[symbol2] and self.Portfolio[symbol2].HoldStock: self.Liquidate(symbol2) elif symbol_dict[symbol1] <= symbol_dict[symbol2] and self.Portfolio[symbol1].HoldStock: self.Liquidate(symbol1) # Mark processed selling processed_pairs_selling.add(symbol1) processed_pairs_selling.add(symbol2) # Iterate remaining selling for symbol,value in symbol_dict.items(): if symbol not in processed_pairs_selling and not value == 0 and symbol not in exclude_symbols: percentage_equity = self.Portfolio[symbol].HoldingsValue/self.Portfolio.TotalPortfolioValue if value < percentage_equity and abs(value/percentage_equity - 1) > self.buffer_pct: self.SetHoldings(symbol,value) # Iterate pairs buying for symbol1,symbol2 in pairs_dict.items(): if symbol1 in symbol_dict and symbol2 in symbol_dict and symbol1 not in processed_pairs_buying and symbol2 not in processed_pairs_buying: offset_value = abs(symbol_dict[symbol1] - symbol_dict[symbol2]) if offset_value > 0.01: if symbol_dict[symbol1] > symbol_dict[symbol2]: self.SetHoldings(symbol1,offset_value) else: self.SetHoldings(symbol2,offset_value) else: if self.Portfolio[symbol1].HoldStock: self.Liquidate(symbol1) if self.Portfolio[symbol2].HoldStock: self.Liquidate(symbol2) # Mark as processed buying processed_pairs_buying.add(symbol1) processed_pairs_buying.add(symbol2) # Filter less than 1% updated_equities = {symbol for symbol, value in symbol_dict.items() if value >= 0.01} # Iterate remaining symbol_dict for buying for symbol,value in symbol_dict.items(): if (symbol in updated_equities and symbol not in processed_pairs_buying and symbol not in exclude_symbols): percentage_equity = (self.Portfolio[symbol].HoldingsValue / self.Portfolio.TotalPortfolioValue) if value > percentage_equity and abs(percentage_equity/value - 1) > self.buffer_pct: self.SetHoldings(symbol,value) self.HT1 = {str(i).zfill(2): 0 for i in range(1,10)} self.HTS1 = {str(i).zfill(2): [] for i in range(1,10)} self.HT3 = {str(i).zfill(2): 0 for i in range(1,10)} self.HT3 = {str(i).zfill(2): 0 for i in range(1,10)} self.HTS3 = {str(i).zfill(2): [] for i in range(1,10)}