Overall Statistics |
Total Trades 220 Average Win 0.34% Average Loss -0.47% Compounding Annual Return -3.395% Drawdown 15.500% Expectancy -0.018 Net Profit -1.986% Sharpe Ratio -0.047 Probabilistic Sharpe Ratio 18.881% Loss Rate 43% Win Rate 57% Profit-Loss Ratio 0.72 Alpha -0.323 Beta 1.861 Annual Standard Deviation 0.195 Annual Variance 0.038 Information Ratio -1.369 Tracking Error 0.13 Treynor Ratio -0.005 Total Fees $295.69 |
from QuantConnect.Data.UniverseSelection import * import math import numpy as np import pandas as pd import scipy as sp # import statsmodels.api as sm class FundamentalFactorAlgorithm(QCAlgorithm): def Initialize(self): self.SetStartDate(2006, 6, 1) #Set Start Date self.SetEndDate(2007, 1, 1) self.SetCash(100000) #Set Strategy Cash self.UniverseSettings.Resolution = Resolution.Minute self.AddUniverse(self.CoarseSelectionFunction, self.FineSelectionFunction) self.spy = self.AddEquity("SPY", Resolution.Minute).Symbol self.holding_months = 1 self.num_screener = 100 self.num_stocks = 20 self.formation_days = 200 self.lowmom = False self.month_count = self.holding_months self.Schedule.On(self.DateRules.MonthStart("SPY"), self.TimeRules.BeforeMarketClose(self.spy, 10), Action(self.monthly_rebalance)) self.Schedule.On(self.DateRules.MonthStart("SPY"), self.TimeRules.BeforeMarketClose(self.spy, 0), Action(self.rebalance)) # rebalance the universe selection once a month self.rebalence_flag = 0 # make sure to run the universe selection at the start of the algorithm even it's not the manth start self.first_month_trade_flag = 1 self.trade_flag = 0 self.symbols = None def CoarseSelectionFunction(self, coarse): if self.rebalence_flag or self.first_month_trade_flag: # drop stocks which have no fundamental data or have too low prices selected = [x for x in coarse if (x.HasFundamentalData) and (float(x.Price) > 5)] # rank the stocks by dollar volume filtered = sorted(selected, key=lambda x: x.DollarVolume, reverse=True) return [ x.Symbol for x in filtered[:200]] else: return Universe.Unchanged def FineSelectionFunction(self, fine): if self.rebalence_flag or self.first_month_trade_flag: try: filtered_fine = [x for x in fine if (x.ValuationRatios.EVToEBITDA > 0) and (x.EarningReports.BasicAverageShares.ThreeMonths > 0) and x.EarningReports.BasicAverageShares.ThreeMonths * (x.EarningReports.BasicEPS.TwelveMonths*x.ValuationRatios.PERatio) > 2e9] except: filtered_fine = [x for x in fine if (x.ValuationRatios.EVToEBITDA > 0) and (x.EarningReports.BasicAverageShares.ThreeMonths > 0)] top = sorted(filtered_fine, key = lambda x: x.ValuationRatios.EVToEBITDA, reverse=True)[:self.num_screener] self.symbols = [x.Symbol for x in top] self.rebalence_flag = 0 self.first_month_trade_flag = 0 self.trade_flag = 1 return self.symbols else: return Universe.Unchanged def monthly_rebalance(self): self.rebalence_flag = 1 def rebalance(self): spy_hist = self.History([self.spy], 120, Resolution.Daily).loc[str(self.spy)]['close'] if self.Securities[self.spy].Price < spy_hist.mean(): for symbol in self.Portfolio.Keys: self.Liquidate() return if self.symbols is None: return chosen_df = self.calc_return(self.symbols) chosen_df = chosen_df.iloc[:self.num_stocks] self.existing_pos = 0 add_symbols = [] for symbol in self.Portfolio.Keys: if symbol.Value == 'SPY': continue if (str(symbol) not in chosen_df.index): self.SetHoldings(symbol, 0) elif (str(symbol) in chosen_df.index): self.existing_pos += 1 weight = 0.99/len(chosen_df) for symbol in chosen_df.index: #self.AddEquity(symbol) self.SetHoldings(symbol, weight) def calc_return(self, stocks): hist = self.History(stocks, self.formation_days, Resolution.Daily) self.price = {} ret = {} for symbol in stocks: if str(symbol) in hist.index.levels[0] and symbol in self.CurrentSlice and self.CurrentSlice[symbol] is not None: self.price[symbol] = list(hist.loc[symbol]['close']) self.price[symbol].append(self.CurrentSlice[symbol].Close) for symbol in self.price.keys(): ret[symbol] = (self.price[symbol][-1] - self.price[symbol][0]) / self.price[symbol][0] df_ret = pd.DataFrame.from_dict(ret, orient='index') df_ret.columns = ['return'] sort_return = df_ret.sort_values(by = ['return'], ascending = self.lowmom) return sort_return